

DHRANGADHRA STATE.

SALT.

Technology and Manufacture of By-Products

BY

KAPILRAM H. VAKIL,
M.Sc TECH. (MANC), B.A. (BOM), F.I.C.,
CONSULTING CHEMIST & CHEMICAL ENGINEER

BOMBAY
PRINTED AT THE TIMES PRESS
1924.

[Copyright]

NAVSARI CHAMBERS.

Hornby Road Fort,

BOMBAY, 6th March 1924

His HIGHNESS MAHARANA SHRI,

SIR GHANSHYAMSINHJI AJITSINHJI, G C I E , K C S I ,

MAHARAJA RAJ SAHEB OF DHRANGADHRA,

DHRANGADHRA

YOUR HIGHNESS,

I have the honour to submit herewith, through Dewan Saheb Mansinhji Jhala, my Report upon Salt Manufacture which I have prepared at Your Highness' desire

This report deals with the Technology of Salt Manufacture and the recovery of several by-products with particular reference to the rich and almost inexhaustible brine found in Your Highness' State

From this report it will be realised that a complete recovery of the valuable by-products would not only add to the prosperity of the State by the establishment of an important industry, but would also help considerably the great textile industry at Ahmedabad and Bombay on which the prosperity of this Presidency is based

Your Highness will realise from this report that considerable work has been done during the last three years since I first visited Kuda to arrive at definite conclusions regarding these by-products, and it is with a view to complete our records that I have embodied in the report the results of my observations at greater length than I originally intended I am sure this report will help those engaged in this industry, and particularly the Officers who will be called upon to undertake a new administrative department of the State Confident in the hope of receiving your full appreciation,

I beg to remain,

Your Highness,

Your most obedient Servant,

KAPILRAM II VAKIL,

Consulting Chemist

PREFACE

This report was prepared at the request of His Highness the Maharaja Raj Sahib of Dhrangadhra and is the result of several years' study of salt manufacture in India. During my investigations I found considerable difficulties in gathering the information necessary for this report. Some curious and in many cases very strange, ideas prevailed on the subject of salt manufacture. Even the most experienced Salt Officers of the Government had very limited knowledge on the subject. What information I was able to gather, was tainted with superstition and prejudices showing a complete ignorance of the true nature of chemical processes. I have, therefore, been obliged to treat at length the Chapters on the Technology of Salt. The work however, does not claim to be a treatise on the subject, but it gives in general outlines the process and the nature of the materials in sufficient details to give the reader a general idea of the industry, with particular reference to the prospects of the industry in the Dhrangadhra State. The experimental work and the series of observations recorded in this report were carried out systematically during the last six years.

ACKNOWLEDGMENT

Before submitting this report to the State, I have to acknowledge the opportunities and help given to me by my various friends, and by Messrs Tata Sons, Limited, The Tata Engineering Company, Limited, and Messrs Tata, Limited (London) During my connections with them as their Consulting Chemist, and while studying for them the Salt Industry of Bengal, I had occasions to visit almost all the important salt works in India and in England I have also to acknowledge the assistance rendered to me by the Gaekwar Oil and Chemical Company, Limited, in connection with whose projects I visited the French, German and American works Every important plant in these countries was personally visited by me between 1918 and 1922 I am also obliged to Messrs Perm and Marshall of New York for an extensive programme of visits to the American works, and Messrs Robert Wonckhaus & Co, of Hamburg, for my visits to German works I am also indebted to Dr F W Atack for his very valuable suggestions regarding the visits to the Continental and American works Besides this I have to acknowledge the generous help rendered to me by Mr De Souza, Commissioner of Salt, Dhrangadhra State, and Mr R D Bell I C S, Director of Industries, Bombay. I have also to acknowledge the willing and able help rendered to me in the execution of the experimental work and in the preparation of this report by my assistants, particularly the following —

Mr N B Bhagvat, M A
,, V G Sathave, M A.
,, K M Sheth, M Sc.

CONTENTS

PAGE.

PREFACE

ACKNOWLEDGMENT	
I INTRODUCTION	1
II GEOLOGY OF KUDA BRINL DEPOSITS	1
,, ,, RANN OF CUTCH	1
III COMPOSITION OF SEA WATER	9
IV RECOVERY OF DISSOLVED SUBSTANCE—	11
EVAPORATION	16
SOLAR EVAPORATION	19
EVAPORATION ON OPEN SURFACES IN INDIA	22
CRYSTALLISATION OF SALT	28
COMMON SALT CRYSTALS	30
V TECHNOLOGY OF SALT	33
VI CONSTITUENTS OF SEA WATER AND BRINI—	55
PROPLRTIES AND USES	55
VII BRINL SALT WORKS—INDIA—	63
KHARAGHODA	63
KUDA	110
NIMAKNAGAR	113
SAMBHAR	125
PACHBADRA AND DIDWANA	128
VIII OTHER SALT WORKS IN INDIA—	129
ROCK SALT—PUNJAB	129
SEA SALT—MADRAS AND BOMBAY	131
ADEN	141
IX FOREIGN SALT WORKS—	141
FRENCH	144
STASSFURT	155
ENGLISH	156
AMERICAN	161

CONTENTS

	PAGE
X APPENDIX—	
EXTRACTION OF POTASH AND OTHER CONSTITUENTS FROM BITTERNS	171
XI TABLES—	
1 CONVERSION TABLES	200
2 THERMOMETER READINGS	201
3 HYDROMETRIC TABLES	203
4 CONVERSION OF MAUNDS INTO TONS	205
5 SPECIFIC GRAVITY OF SOLUTIONS OF SALT	206
6 BOILING POINTS OF SOLUTIONS OF SALT	206
7 SOLUBILITY OF SODIUM CHLORIDE	207
8 VOLUMES OF SALT SOLUTIONS	207
9 SOLUBILITY OF CALCIUM CARBONATE	208
10 , , SULPHATE	208
11 , MAGNESIUM ,	209
12 POTASSIUM CHLORIDE	210
13 , , , SULPHATE	211
14 SODIUM ,	212
15 , CALCIUM CHLORIDE	213
16 , MAGNESIUM ,	214
17 POTASSIUM BROMIDE	215
18 MAGNESIUM ,	216
19 VAPOUR PRESSURE OF WATER	217
20 SATURATED SALT SOLUTIONS	218
IMPORTS OF CHEMICALS IN INDIA	218
DISTANCES OF PRINCIPAL PLACES FROM NIMAKNAGAR	222
CURRENT MARKET PRICES OF SALT IN BENGAL	223
TOTAL SALT CONSUMED IN INDIA	223
SALT PRODUCTION IN BOMBAY PRESIDENCY	224
WORLD'S PRODUCTION OF SALT	224
REFERENCES	225
INDEX	227

SALT

I.

INTRODUCTION

India's place among the Salt-producing countries of the World—India occupies the fourth position among the great salt producing countries of the world, though the Indian use of salt is limited to domestic and agricultural requirements, it produces a very large quantity from various sources In the United States of America, in the United Kingdom and in Germany over fifty per cent of the salt produced is used in Chemical industries In 1920 the world's salt production was 18,000,000 tons, of which the United States of America produced 33 per cent, Germany 15, England 12 5, India 9 5, France 6 5, and the rest of the countries -4 5 per cent This industry in India even in spite of a limited use for salt, is of considerable importance Salt for domestic, agricultural and industrial use is obtained from a number of sources It is found in abundance as rock salt at the Salt Range in the Punjab, as natural brine in the Sambhai Lake and in the Rann of Cutch, at Kharaghoda and at Kuda in the Dhrangadhra State It is also recovered from sea water in the Bombay and the Madras Presidencies Besides the salt produced from these sources India supplements its requirements by importing a considerable large quantity from foreign countries, principally from England, Spain, the Red Sea and Aden.

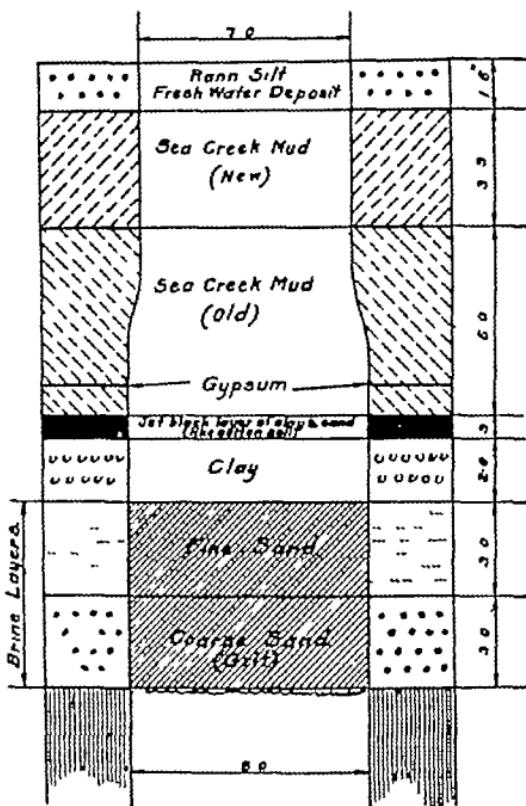
Salt manufacture in Dhrangadhra State—The manufacture of salt in this state at Kuda is of very ancient date. When the Jhala Chieftains retired to Halvad, they set up their salt works at Kuda, and these were guaranteed to the Halvad Jhala chiefs by the Emperor Aurangzeb in the 27th year of his reign (A D 1669-70). These rights were maintained unimpaired during the last two hundred and fifty years, and throughout the many changes in the forms of Government. In 1807 these rights were recognised among others by the British. In 1858 the Proclamation of Queen Victoria also recognised the right of the State to manufacture salt at Kuda. Kuda even then specialized in the production of Vadagra salt (Baragara) which was considered to be the best of its kind. The crystals of Vadagra salt are described in the *Meerut-I-Ahmadi*, which says that the salt resembles pieces of sugar and is exported to Malwa and elsewhere. In 1874 the Government of Bombay initiated certain measures to prevent the smuggling of salt manufactured in the Indian States. The sole object of the Government at that time was the safeguarding of the revenue and not to put any restrictions in the manufacture of fine grained salt. In 1880 the Government restricted the production of salt in the Dhrangadhra State to 90,000 maunds per year. In 1883 the production of Vadagra salt was restricted to 40,000 maunds annually, and in 1900 the manufacture of Vadagra salt was altogether prohibited by the British Government. In compensation of this restriction the State was given Rs 7,000 per annum. In 1915 the State approached the Government requesting a revision of the Treaty of 1900 with a view to encourage the manufacture of Magnesium Chloride and other by-products from the State salt works. After considerable delay the Government of India restored to the State its right of manufacturing both Vadagra and Ghasia salt. On 30th October 1923 the Governor of Bombay—Sir George Lloyd—formally re-opened the Kuda salt works.

While the Government was considering the revision of the Treaty, I was asked by the State in 1920 to submit a report on the possibilities of manufacturing various by-products from the mother

liquor remaining after the recovery of salt from the brine at Kuda. While enquiring into the economical uses of the various products and the possibilities of recovering them, I encountered considerable difficulties in getting together the information that was necessary for the purposes of the report, as much curious information was supplied to me, and as there were no records of observations necessary for the preparation of a comprehensive scheme, the progress of the report was slow, and much time was taken up in preliminary investigations and enquiries. For over two years the State had to give up all its investigations till the Government gave a definite reply.

II

GEOLOGY OF THE KUDA BRINE DEPOSITS


Rann of Cutch—On examining the brines of Kuda and Kharaghoda wells it was found that they resembled very nearly in their general composition to concentrated sea water. There is no material difference in the nature of the dissolved salts. This close resemblance is another proof of the geological formation of the Rann of Cutch on the banks of which both the salt works are located. Before proceeding with the discussion of the technology of salt manufacture and the prospects of recovering the by-products from the brine, it would be necessary to determine that the brine in the Rann has originated from the concentration of the sea water in the lower strata of the Rann.

To the north of the Dhrangadhra State there is a very large tract of open, barren, sandy, lifeless waste, known as the Rann of Cutch. It is 80 miles from east to west and 10 to 40 miles from north to south, and covers an area of 2,000 square miles, of which 1,200 square miles are within the boundary of the Dhrangadhra State. The little Rann meets the sea at Hansthal creek and stretches north-east to about forty miles—a creek varying from 5 to 30 miles in breadth. It stretches east and west, a white three-cornered sea bed, about 40 miles east to the Great Kharaghoda salt works and about 30 miles north to the Chorad Island and Adesar in Cutch. The level of the Rann at Hansthal creek is 6 781—2 75 feet above the mean sea level, and at about 30 miles east, opposite the Kuda salt works, the level is 6 781 feet in the middle of the Rann, or two feet, nine inches lower than the mouth of the Hansthal creek. It will thus be seen that at the creek there is a bar over two feet above the mean level of the Rann, and that the Rann forms a sort of a depression in which during the monsoon the detritus discharged by the rivers on the banks of the Rann accumulate and flood the

gulf of the Rann. The Rann is completely flooded in September by the high spring tides which overflow the banks at the creek and rush in far inland in the Rann. This flood caused by the joint flow of the sea and river waters rise up to a level of 3 to 4 feet near the banks and 5 to 7 feet in the middle of the Rann. The level of the floods begin to go down with the stoppage of the monsoon and the discharge of the rivers after October. At the end of December the broad expanse of the waters of the Rann begin to dry leaving a wide incrustation of salt on the surface. The banks of the Rann on the Kathiawad side being 18" to 24" higher than the outer fringe of the Rann remain above the floods. The whole of the Rann is fairly dry from December to the end of March. About the end of April or the beginning of May strong south-west gales accompanied with sand storms and extraordinarily high tide force the water up the Hanthal creek into the Rann. During the summer the barren, lifeless Rann gives rise to the most notable peculiarity—the Mirage.

The Rann was at one time the bed of an arm of sea which was raised by some natural convulsion above its original level and thus cut off from the Ocean. Geologically the Rann is of very recent formation, as there are records which prove that in the time of Alexander (320 B C) it was a navigable sea, and as late as the third century it was known to have several ports on its banks. That the Rann was a navigable sea is also proved from small wooden remnants of boats, oars and other articles found very often embedded in the lower strata in which shells, fossils, bones and other marine deposits are found. That the bed of the sea was raised by earthquakes is also proved from the earthquakes which are very common in Cutch. The great earthquake of 1819 was very severely felt. The last shock was in 1864. In consequence of these repeated earthquakes the bed of the sea has risen and given rise to the salty waste. In course of time the shallow bed gradually filled with clay, sand and gravel discharged from the rivers on its banks, and as the waters narrowed and the silt accumulated the last remnant of the sea disappeared, leaving

in course of time distinct layers upon layers of the alluvial soil. For many years there has been no general disturbance in the level of the Rann by earthquakes and the salt sand strata near Kharaghoda is gradually getting exhausted of its natural brine which is receding towards the west. The sections of the wells as shown in Fig 1 at Kuda and Kharaghoda give further proofs of the Rann being originally a bed of sea. The surface layer of the Rann

SECTION OF RANN
(Different Strata in Wells)

FIG 1

is one and-a-half feet of black, sticky, salt clay, washed out with fresh water during the monsoon from the surrounding coast and brought as silt in the discharge of the rivers Under this there is a new deposit of yellowish to greenish coloured mud, which seems

to have been deposited when the area was a sea-creek. Under this there is a deep grey to indigo coloured mud layer, at some places varying in thickness from six to twelve feet, this old strata of mud shows another period when it was the bed of the sea-creek. In this zone about nine to twelve feet from the surface there is a gypsum deposit of three-fourths to two inches in thickness, under this there is a layer more or less of black clay and sand resembling black cotton soil, under the old layer of dark mud there is a layer of four feet of argillaceous clay and marl. This deposit is over a layer of fine sand from three to four feet in thickness, which in turn lies over a layer of coarse sand or grit, which in places has consolidated from large calcarious matters. Brine is found in the salt-sand and grit strata, although in some unused wells brine comes upto about four feet from the surface. In the old and new mud layers there are a number of shells and remains of vegetation. When wet the sides of wells cave in the old mud horizon and have to be protected. As the main land is approached this old mud gets lesser and lesser, and at places it totally disappears. Sand, consolidated grit and loose grit are fresh water deposits. Below these deposits there is a deposit of brown mud in which there is no brine. The analysis of the brines from Kuda and Kharaghoda wells, the Geological formation of the Rann of Cutch and the analysis of the Arabian sea water leave no doubt that the presence of the brine in the Rann is due to the evaporation of the enclosed sea water during the gradual silting of the Rann. It is commonly believed that as the middle of the Rann is still under the high tide level at Hansthal, and as the salt-sand strata is twelve to eighteen feet below the surface, this strata must finally dip into the sea at Hansthal, and that the constant supply of brine in the Rann is maintained by percolation of sea water through the sand strata all over the Rann—this supposition is yet to be proved. For over 70 years brine has been drawn from the salt-sand strata without the wells running completely dry. It has however been found that the brine is receding to the west at Kharaghoda, and the wells require considerable time in filling up, and the average depth of the wells has gone on deeper and deeper.

year after year. This deficiency is due to the higher level of Kharaghoda. Nearer Kuda there is a plentiful supply of brine and no shortage of brine has been reported, though at one and the same site brine has been drawn for the salt works for over 600 years. There is no likelihood of a deficiency of brine at Kuda. The annual high sea inundation flows inland a few miles to the east of Kuda, but it stops 10 miles away from Kharaghoda. If this high sea inundation had continued to spread over the Kharaghoda district, there would not have been a gradual shortage in the supply of brine as they have experienced during the last few years. It must be noted that brine is only obtainable in the salt-sand strata; deeper borings have not shown any brine at lower depths which at places have given brakish fresh water.

We have in the brine of the Rann all the salts in practically the same proportions as are found in sea water, except Calcium Sulphate which has separated out as a thin layer in the Rann during the spontaneous evaporation of the enclosed waters. Magnesium Sulphate present in the sea water has been largely converted into Magnesium Chloride during the exposure in the cold. It is for this reason that we find a large percentage of Magnesium Chloride in the Rann brine. As the materials present in the Rann brine are the same as in the parent source, i.e., sea water, it will be necessary at this stage to examine very carefully the composition of sea waters.

III

COMPOSITION OF SEA WATER.

Sea Water — From the different analyses given in the following tables it will be noticed that the general nature of the constituents in the different sea waters throughout the world is very nearly alike. The difference is in degree but not in the character of the constituents. The quantities of the principal salts vary within very narrow limits, and the total of solids dissolved in most of them is also within very narrow limits. A very extensive observation of the composition of sea waters was made by Dittmar, who gives the following average composition of sea salts —

	Per cent
Chlorine	55 292
Bromine	0 1884
Sulphuric acid (SO_3)	6 410
Carbonic acid (CO_2)	0 152
Lime (CaO)	1 676
Magnesia (MgO)	6 209
Potash (K_2O)	1 332
Soda (Na_2O)	41 234
Basic oxygen equivalent to the halogens	(—12 493)
 Total	 100 000

Wagner gives the following Analyses of Sea Waters — In 100 parts of Sea Water

	Pacific Ocean	Atlantic Ocean	German Ocean	Red Sea
Sodium chloride	2 5877	2 7358	2 5513	3 030
Sodium bromide	0 0401	0 0326	0 0373	0 064
Potassium sulphate	0 1359	0 1715	0 1520	0 295
Calcium sulphate	0 1622	0 2046	0 1622	0 170
Magnesium sulphate	0 1104	0 0614	0 0706	0 274
Magnesium chloride	0 4345	0 3260	0 4641	0 404
Potassium chloride				0 288
	3 4708	3 5519	3 4384	4 534

year after year. This deficiency is due to the higher level of Kharaghoda. Nearer Kuda there is a plentiful supply of brine and no shortage of brine has been reported, though at one and the same site brine has been drawn for the salt works for over 600 years. There is no likelihood of a deficiency of brine at Kuda. The annual high sea inundation flows inland a few miles to the east of Kuda, but it stops 10 miles away from Kharaghoda. If this high sea inundation had continued to spread over the Kharaghoda district, there would not have been a gradual shortage in the supply of brine as they have experienced during the last few years. It must be noted that brine is only obtainable in the salt-sand strata, deeper borings have not shown any brine at lower depths which at places have given brakish fresh water.

We have in the brine of the Rann all the salts in practically the same proportions as are found in sea water except Calcium Sulphate which has separated out as a thin layer in the Rann during the spontaneous evaporation of the enclosed waters. Magnesium Sulphate present in the sea water has been largely converted into Magnesium Chloride during the exposure in the cold. It is for this reason that we find a large percentage of Magnesium Chloride in the Rann brine. As the materials present in the Rann brine are the same as in the parent source i.e., sea water, it will be necessary at this stage to examine very carefully the composition of sea waters.

III

COMPOSITION OF SEA WATER

Sea Water — From the different analyses given in the following tables it will be noticed that the general nature of the constituents in the different sea waters throughout the world is very nearly alike. The difference is in degree but not in the character of the constituents. The quantities of the principal salts vary within very narrow limits, and the total of solids dissolved in most of them is also within very narrow limits. A very extensive observation of the composition of sea waters was made by Ditmar who gives the following average composition of sea salts —

	Per cent
Chlorine	55 292
Bromine	0 1884
Sulphuric acid (SO_3)	6 410
Carbonic acid (CO_2)	0 152
Lime (CaO)	1 676
Magnesia (MgO)	6 209
Potash (K_2O)	1 332
Soda (Na_2O)	41 234
Basic oxygen equivalent to the halogens	(—12 493)
 Total	100 000

Wagner gives the following Analyses of Sea Waters — In 100 parts of Sea Water

	Pacific Ocean	Atlantic Ocean	German Ocean	Red Sea
Sodium chloride	2 5877	2 7358	2 5513	3 030
Sodium bromide	0 0401	0 0326	0 0373	0 064
Potassium sulphate	0 1359	0 1715	0 1520	0 205
Calcium sulphate	0 1622	0 2046	0 1622	0 179
Magnesium sulphate	0 1104	0 0614	0 0706	0 274
Magnesium chloride	0 4345	0 3260	0 4641	0 404
Potassium chloride				0 288
 Total	3 4708	3 5519	3 4384	4 534

The composition of the salt contained in the water of the several seas is shown by the following table —

	Caspian Sea	Black Sea	Baltic	English Channel average of 7 locals	Mediterranean average of 3 locals	Atlantic Ocean average of 3 locals	Dead sea average of 5 locals
Average quantity of salt and water —							
Solid salt	0 63	1 77	1 77	3 31	3 37	3 63	22 30
Water	99 37	98 23	98 23	98 89	98 63	98 37	77 70
The dissolved solid matter consists in 100 parts of —							
Sodium chloride	58 25	79 39	84 70	78 04	77 07	77 03	36 55
Potassium chloride	1 27	1 07		2 09	2 48	3 89	4 57
Calcium chloride				0 20			11 38
Magnesium chloride	10 00	7 38	9 73	8 81	8 78	7 86	45 20
Sodium and Magnesium Bromides		0 03		0 28	0 49	1 30	0 85
Calcium sulphate	7 78	0 60	0 13	3 82	2 76	4 63	0 45
Magnesium sulphate	19 68	8 32	4 96	6 58	8 34	5 29	
Calcium and Magnesium carbonates	3 02	3 21	0 48	0 18	0 10		
Nitrogenous and Bituminous matter							1 00

One cubic meter (35 3165 cubic ft) of sea water contains about 28 to 31 kilos of sodium chloride and 5 to 6 kilos of potassium chloride.

ANALYSES OF SEA WATER

Sea	Na	Cl	Mg	Ca	K	SO ₄	Br	CO ₂	Fe	Fixed Residues
Atlantic Ocean										
Do	11.081	19.100	0.9365	0.1587	0.7604	2.577	0.1069			35.700
Do	10.464	19.012	1.2735	0.1484	0.7252	2.140	0.3102			11.700
Do.	11.719	20.840	1.1981	0.5568	0.6882	3.029	0.3878			18.100
Do	10.457	18.841	1.1763	0.5280	0.5916	2.878	0.1271			11.800
North Sea										
Do	10.117	18.974	1.3144	0.1782	0.6811	2.564	0.2024			34.400
Do	10.206	19.168	1.1582	0.1214	0.1536	2.590	(?)			32.800
Straits of Dover										
Do	10.142	17.794	1.2905	0.1093	0.0425	2.882	0.1016	0.078	Trace ^a	32.700
Mediterranean										
Do	10.688	21.039	1.0017	0.018	0.0044	5.716	(?)	0.112		10.700
Do	11.706	20.527	1.3104	0.1411	0.2613	2.913	0.134	0.0679	0.0028	37.700
Do	8.779	15.882	1.1616	0.1769	0.1356	2.662	(?)			29.100
Pacific Ocean										
Do	10.262	18.970	1.3151	0.1719	0.6938	2.786	0.3102			34.700
Baltic										
Black Sea										
Sea of Azof										
Caspian Sea										
Dead Sea										
Do	14.360	17.985	4.1128	17.269	4.136	0.6276	7.093	Trace ^a	Trace ^a	278.135

ANALYSIS OF WATER FROM THE IRISH
CHANNEL

	Parts per 1,000.
NaCl	26 43918
KCl	0 74619
MgCl ₂	3 15083
MgBr	0 07052
MgSO ₄	2 06608
MgCO ₃	trace
Mg(NO ₃) ₂	0 00207
CaNO ₃	1 33158
CaCO ₃	0 04754
LiCl	trace
NH ₄ Cl	0 00044
FeCl ₃	0 00503
SiO ₂	trace
<hr/>	
Total	33 85946
Sp Gr at 0°C	1 02721
, , , 15°C	1 02484

Bombay Sea Water

PARTS PER 1,000 PARTS SEA WATER

Sodium	10 5599
Chlorine	18 7782
Magnesium	1 2851
Calcium	0 3440
Potassium	0 5709
SO ₄	2 8870
CO ₂	0 0760
Bromine	0 5160
<hr/>	
	35 0171

Calcium Carbonate	0 1266
Calcium sulphate	0 9976
Magnesium sulphate	2 7267
Potassium chloride	1 0906
Magnesium chloride	2 6220
Magnesium bromide	0 5934
Sodium chloride	26 8588
	35 0157
	Per cent.
CaCO ₃	0 3615
CaSO ₄	2 8490
MgSO ₄	7 7880
KCl	3 1145
MgCl ₂	7 4880
MgBr ₂	1.6940
NaCl	76 7050
	100 0000

RECOVERY OF DISSOLVED SUBSTANCES

Substances dissolved in Sea Waters and Brines—From the analyses of sea waters given above it will be found that the principal constituents of the total dissolved solids in sea waters are the following —

- Calcium carbonate
- Calcium sulphate
- Sodium chloride
- Potassium chloride
- Magnesium sulphate
- Sodium sulphate
- Magnesium chloride
- Magnesium bromide

Besides these salts there is a large number of others occurring in very small quantities in sea water, *e.g.*, Iodides, Fluorides, Phosphates and Nitrates, Iron, Silver, Gold, Copper, Lead, Arsenic, Zinc, Nickel, Lithium, Rubidium and Ceasium, but as these substances occur in infinitely minute quantities, they are of no technical importance in the recovery of substances from sea water

The dissolved substances give to the sea water their characteristic saline taste. There is a limit to the solubility of each of these substances. This limit depends upon the temperature of the liquid and the presence of other dissolved salts. In each individual case, water at a given temperature will dissolve only a certain quantity of the substance (Fig 2). When this quantity is dissolved, it will dissolve no more of that particular substance. The solution in that case gets *saturated*. In order to recover the dissolved substance, water which is not chemically changed by the dissolved substance must be removed by evaporation either spontaneously in the open air, or by the application of heat. Most of the solids

are dissolved in larger proportions by increase of temperature, but in the case of Sodium Chloride, its solubility remains practically constant at higher temperatures.

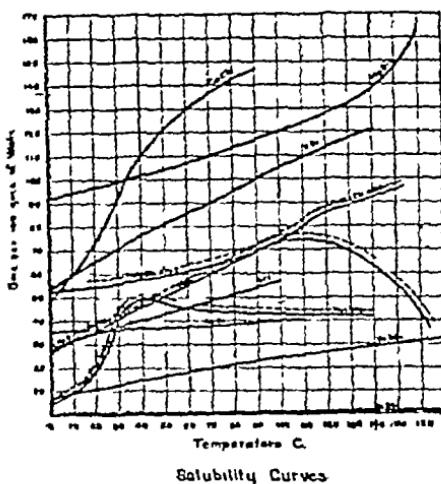
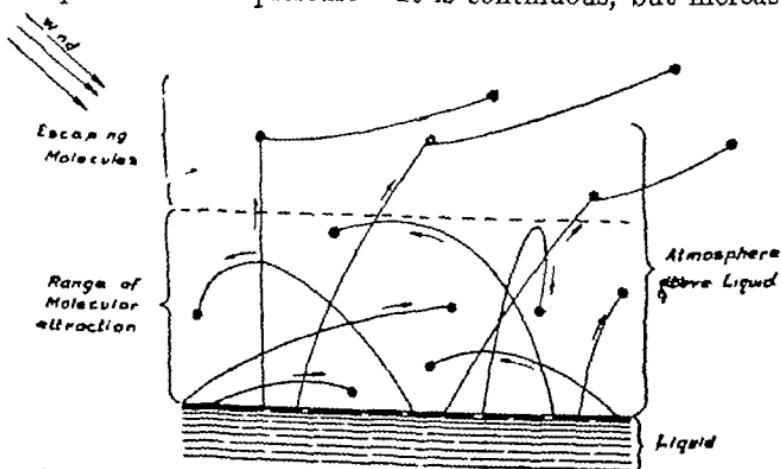


FIG. 2.

If the saturated solution is lowered in temperature or its volume reduced by evaporation, the equilibrium is disturbed, and the solution in that case holds more salt than it is able to retain in its normal solubility conditions. The solution is at this point *super-saturated*, and the salt in excess will be thrown out of the solution as a solid until again a stable solution is formed under the altered conditions. This process becomes complicated if the solution contains more than one dissolved salt. The separation of the dissolved solids as the evaporation proceeds is in a fixed order. The least soluble salt separates first and it is followed by the other salt in the order of its solubility. By regulating the rate of evaporation it is thus possible to separate out each salt as it reaches its point of saturation. This process known as *fractional crystallisation* is applied in the separation of the various salts dissolved in sea water. In certain cases two salts separate out simultaneously. In such cases the mixture of salts is re-dissolved in fresh water, and the solution again concentrated and the salts re-crystallised. By this process of recrystallisation, pure salts are isolated. If, when the solution

is super-saturated a minute crystal of the salt is introduced into the solution by way of seeding or inoculation, the process of crystallisation starts spontaneously in the solution. In many cases if the super-saturation is carried far enough, the crystallisation will grow without the necessity of inoculation. When inoculation is necessary, the solution is in the metastable state, and when no inoculation is required and where the crystallisation is spontaneous, the solution is in the labile state. In the concentration of sea water we have these three states occurring between the following densities—


From 35—17° B the solution is unsaturated

From 17—25° B it is saturated as far as Calcium Sulphate is concerned

From 24—25° B the sea water or brine is in the metastable state

Between 25—29.5° B it is in the labile state as far as Sodium Chloride is concerned

Evaporation—The change in water from its liquid to the gaseous state is brought about in increasing the molecular activity by the application of heat. The molecules of water are in a state of perpetual motion (Fig. 3). The energy of this motion depends on the temperature and pressure. It is continuous, but increases if

DIAGRAMMATIC REPRESENTATION OF THE MOLECULES JUST ABOVE THE SURFACE OF AN EVAPORATING LIQUID
FIG 3

heat is applied to the liquid. When the molecules in motion are in liquid they are attracted by other surrounding molecules but when these molecules reach the surface, some of them are moving with sufficient velocity to escape from the surface of the liquid into the surrounding space and mingle with the air over the liquid. Some of the molecules that have thus escaped have not sufficient energy to remain in the space and are thrown back in the liquid. Over the liquid there is a certain layer of molecules in gaseous form in constant struggle to go out of and come inside the liquid, the process of coming out of the liquid is known as *evaporation*. In short, water appears in gaseous state in the form of vapour at its surface. As the molecules are projected from the surface into the air, they have to encounter a certain resistance in their passage exerted by the pressure of the atmosphere and by the pressure of other molecules of water already existing there. If the pressure is great, a number of molecules strike back on the surface and return to the water till for a given temperature a maximum vapour pressure is obtained (Fig. 4). The air above the liquid in that case is *saturated*. But if,

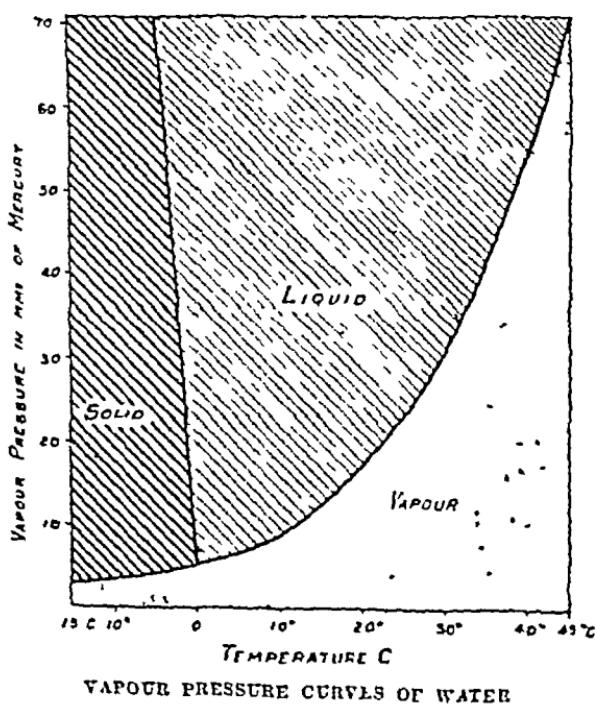


FIG. 4.

as the molecules come out of the liquid they are rapidly carried away by a current of air, they do not get a chance of going back to the liquid state and their place is taken by fresh molecules coming out of the water. The causes therefore which influence the rapidity of evaporation of water in open surfaces are —

- (1) The temperature which increases the molecular activity,
- (2) The quantity of the same vapour in the surrounding atmosphere,
- (3) Renewal of this atmosphere, and
- (4) Extent of the surface of the evaporation inducing a large number of molecules to strike out of the water as vapour at the same

If evaporation is to be accelerated, it is necessary that—

- (1) The molecular activity or temperature should be high. Temperature of the brine would depend on the temperature of air
- (2) The surface exposed should be as large as possible. If the brine is stationary the evaporation will be slow as the area exposed would be constant. If instead of this static condition, the brine is kept moving in thin layers, a very large surface would be exposed to the air and the evaporation in the latter case would be very rapid. The principle of a thin moving film is now widely applied in chemical engineering for concentration of liquids. The exposed surface of a liquid may be considerably increased by a slow trickling over a pile of pebbles or faggots or by spraying from a great height. Both these methods are used in the rapid concentration of brine
- (3) There should be wind. Wind is the greatest factor in the removal of saturated vapours from evaporating surfaces. Wind also increases area exposed by creating waves and ripples. In French salterns wind is considered of greater importance than the sun. By increasing the current of air and by increasing the surface a maximum

rate of evaporation may be obtained. This principle is employed in concentrating brines in high towers about 80 feet high by 8 feet in diameter in which a strong current of air is maintained by blowers. This method is also employed in the concentration of sulphuric acid. The acid towers are generally 50 feet high and 8 feet in diameter.

Solar Evaporation—In tropical and sub-tropical countries salt is recovered from sea water and brines by solar evaporation. If local conditions as regards supply of sea water or brines, soil, level and transport are favourable, salt manufacture by solar evaporation is far more advantageous than by any other means. Solar evaporation requires the general fulfilment of all the above factors, which accelerate the evaporation of water in open surfaces. They are best studied from meteorological observations of the place at which it is proposed to locate the factory. The factors of importance are --

- (1) Temperature of the air
- (2) Pressure, direction and velocity of the wind
- (3) Moisture in the air
- (4) Extent of cloudy skies
- (5) Rainy days and rainfall

(1) Temperature of the Air—The temperature of the air depends upon the altitude of the sun, latitude, elevation, distance from the sea and character of the winds, and also on the amount of clouds and rainfall. During the period—November to February, the temperature of the air in India decreases with the increase of latitude and hence from South to North, the isotherms run across India nearly parallel to the parallels of the latitude. During the next three months (the hot weather season March, April and May) the interior of India is heated more than the coast districts, and the hottest air is generally in the central part of India. During the remainder of the year, from June to September, when salt manufacture by solar evaporation is brought to a stand still, the

south-west monsoon or rainy season prevails. The temperature is highest between the Punjab and Gujarat. In India the mean temperature falls on the average 1° F for every 330 feet of rise in altitude. In the dry hot season the rise is 1° F for every 190-200 feet of elevation.

(2) **Pressure Direction and Velocity of the Wind**—Distance from the sea and direction and character of the prevailing winds are of great importance in the location of salt works. In the cold weather, November to February, dry Continental or Land winds prevail over the whole area. In the hot-weather-season local sea winds prevail in the coast districts, and dry-land-winds over the more distant interiors. During the south-west monsoon period, winds of oceanic origin charged more with moisture, spread over the country. Damp winds are not conducive to rapid evaporation. In the table given in this book the moisture in the air is referred to as *relative humidity*. The chief factors determining the amount of moisture in the air are—(1) Distance from the sea and (2) character of the winds. When air takes up all the moisture which it can take up at a given temperature it is said to be saturated. With an increase in the temperature the saturated air will take up more of the moisture. The moisture in the air is determined by the wet and dry bulb hygrometer. When air is cooled gradually, a point is reached, when dew begins to form. Relative humidity is the ratio of the pressure of the aqueous vapour actually present at a particular temperature to the pressure of the vapour which would be present if the vapour were saturated at the same temperature. Assuming that the barometric pressure is constant, the relative humidity is determined by the following formula—

Relative Humidity = $\frac{P_1}{P_2}$ where P_1 = pressure of the aqueous vapour when saturated at T_1 , P_2 = the pressure of aqueous vapour when saturated at T_2 , T_1 = the observation temperature of the atmosphere in $^{\circ}\text{C}$, T_2 = the dew point at $^{\circ}\text{C}$

The following formula also gives sufficiently accurate results —

Mass of water vapour per unit volume
of air at observed temperature.

Relative Humidity =

 Mass of water vapour per unit volume of
saturated air at same temperature.

Of the two thermometers of the wet and dry bulb hygrometer, one is an ordinary thermometer and shows the temperature of the air. The bulb of the other thermometer has a piece of clean cotton wick wrapped round it, the other end of it is submerged in a small basin of water. This keeps the bulb moistened. If there is much aqueous vapour in the air, there will be little evaporation from the moisture near the bulb, and as evaporation is accompanied by a loss of temperature or cooling effect the mercury will be lowered. But if the air is dry there will be a considerable difference between the temperature recorded by the two thermometers. From the readings of the wet and dry bulb hygrometer the dew point may be determined. The relative humidity table given in this report is from actual observation of the dry and wet bulb thermometers. The aqueous vapour pressure is obtained from the observation of the wet and dry bulb thermometers, and by the use of special tables prepared by the Meteorological Department. In preparing these tables, August's formula as modified by Regnault is used. The formula is based on the relation that the difference between the temperatures of the dry and wet bulbs is proportional to the difference between the actual vapour pressure and the saturation vapour pressure at the same temperature, *i.e.* $e = E \cdot c (T-t)$, T and t are the observed temperatures obtained from the dry and wet bulbs, and E and e are the saturation and actual aqueous vapour pressures at the air temperature T . c is a factor, depending slightly on pressure and temperature, and the constant in which is determined the actual experiment.

(4) The amount of cloudy skies is estimated in terms of the proportion of the sky covered with cloud by numbers ranging from 0-10. A sky free from cloud is denoted by 0 and the overcast

south-west monsoon or rainy season prevails. The temperature is highest between the Punjab and Gujarat. In India the mean temperature falls on the average 1° F for every 330 feet of rise in altitude. In the dry hot season the rise is 1° F for every 190-200 feet of elevation.

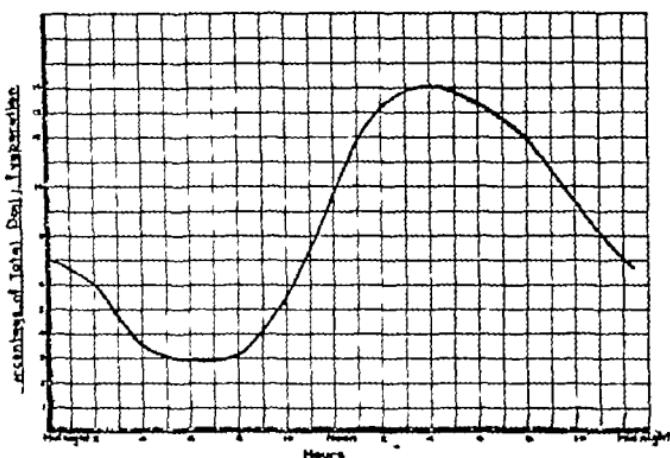
(2) **Pressure Direction and Velocity of the Wind**—Distance from the sea and direction and character of the prevailing winds are of great importance in the location of salt works. In the cold weather, November to February, dry Continental or Land winds prevail over the whole area. In the hot-weather-season local sea winds prevail in the coast districts, and dry-land-winds over the more distant interiors. During the south-west monsoon period, winds of oceanic origin charged more with moisture, spread over the country. Damp winds are not conducive to rapid evaporation. In the table given in this book the moisture in the air is referred to as *relative humidity*. The chief factors determining the amount of moisture in the air are—(1) Distance from the sea and (2) character of the winds. When air takes up all the moisture which it can take up at a given temperature it is said to be saturated. With an increase in the temperature the saturated air will take up more of the moisture. The moisture in the air is determined by the wet and dry bulb hygrometer. When air is cooled gradually, a point is reached, when dew begins to form. Relative humidity is the ratio of the pressure of the aqueous vapour actually present at a particular temperature to the pressure of the vapour which would be present if the vapour were saturated at the same temperature. Assuming that the barometric pressure is constant, the relative humidity is determined by the following formula—

$$\text{Relative Humidity} = \frac{P_1}{P_2} \text{ where } P_1 = \text{pressure of the aqueous vapour when saturated at } T_1, P_2 = \text{the pressure of aqueous vapour when saturated at } T_2, T_1 = \text{the observation temperature of the atmosphere in } {}^{\circ}\text{C}, T_2 = \text{the dew point at } {}^{\circ}\text{C}$$

The following formula also gives sufficiently accurate results —

Mass of water vapour per unit volume
of air at observed temperature.

$$\text{Relative Humidity} = \frac{\text{Mass of water vapour per unit volume of}}{\text{saturated air at same temperature.}}$$


Of the two thermometers of the wet and dry bulb hygrometer, one is an ordinary thermometer and shows the temperature of the air. The bulb of the other thermometer has a piece of clean cotton wick wrapped round it, the other end of it is submerged in a small basin of water. This keeps the bulb moistened. If there is much aqueous vapour in the air, there will be little evaporation from the moisture near the bulb, and as evaporation is accompanied by a loss of temperature or cooling effect the mercury will be lowered. But if the air is dry there will be a considerable difference between the temperature recorded by the two thermometers. From the readings of the wet and dry bulb hygrometer the dew point may be determined. The relative humidity table given in this report is from actual observation of the dry and wet bulb thermometers. The aqueous vapour pressure is obtained from the observation of the wet and dry bulb thermometers, and by the use of special tables prepared by the Meteorological Department. In preparing these tables, August's formula as modified by Regnault is used. The formula is based on the relation that the difference between the temperatures of the dry and wet bulbs is proportional to the difference between the actual vapour pressure and the saturation vapour pressure at the same temperature, i.e. $e = E - c(T-t)$, T and t are the observed temperatures obtained from the dry and wet bulbs, and E and e are the saturation and actual aqueous vapour pressures at the air temperature T . c is a factor, depending slightly on pressure and temperature, and the constant in which is determined the actual experiment.

(4) The amount of cloudy skies is estimated in terms of the proportion of the sky covered with cloud by numbers ranging from 0-10. A sky free from cloud is denoted by 0 and the overcast

sky by 10 The estimate given by the Meteorological Department is not made by any instruments but by mere personal estimate of the observers

(5) The rainfall and rainy days are determined from the average of the records of the Meteorological Department extending over 83 years Rainy day is counted when at least $1/10''$ rain has been measured

Evaporation on Open Surfaces in India —Evaporation on open surfaces varies during the 24 hours of the day as shown in Fig 5

EVAPORATION DURING 24 HOURS

FIG 5

In India for purposes of storage reservoirs, tanks, hydro-electric water supply and lakes, the general average evaporation during the year is taken as 5 feet or 60 inches The following typical observations are given by Buckley, who shows that the loss from evaporation alone rarely exceeds 0 4 inch a day in the hottest and the driest weather In Sholapur during April and May, which are the hottest part of the year 0 38 inch a day is the highest evaporation recorded At the same place the evaporation during November to March averaged 0 232 inch a day In Rajputana the average daily evaporation is as follows —

Daily—Inches

October to March	0.15
April to June	0.29
July to September	0.21
Average of the year	0.26
<hr/>	<hr/>
Total yearly feet	6.15

The average daily loss during different months in the Bombay Presidency (Poona) is as under —

January 0.17	February 0.14	March 0.17
April 0.27	May 0.38	June
October 0.25	November 0.19	December 0.14

Evaporation in NagpurDaily evaporation.
Inches

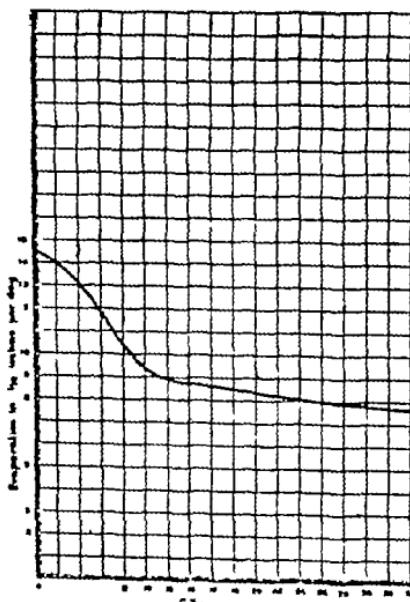
October and November	0.193
November and December	0.143
December, January and February	0.128
February and March	0.138
March and April	0.234
April and May	0.374
May and June	0.188
Maximum observed on any one day in April	0.428
Maximum observed during the year	0.600

From a series of observations Strange has drawn up the following average monthly loss during the principal seasons of the year —

	Inches	Inches.
Cold weather	3 Total for four months	12
Hot weather	8	32
Monsoon	4	16

Total for year 5 ft or 60 ins.

In Ajmer the loss in evaporation is as follows —


	1895-96 ft	1896-97 ft	1897-98 ft	Average- ft
October to March	2 93	2 73	2 58	2 75
April to June	3 26	3 40	3 41	3 36
July to September	1 17	0 79	1 45	1 14
Total for year	7 36	6 92	7 44	7 25

Evaporation in Ajmer will very nearly approximate that in Dhrangadhra State

For record of observations taken at different places in various countries refer to Buckley

The above observations are for open surfaces of fresh water. Evaporation of sea water is stated by Buckley to be quicker than fresh water, but this refers only to the fresh sea water of lower densities

Evaporation of sea water and brine is not uniform at various densities as will be seen from Fig. 6. Evaporation is very rapid

RATE OF EVAPORATION AT DIFFERENT DENSITIES
FIG. 6

at lower densities, but as concentration proceeds, the rate of evaporation gradually lowers. Ratton states that the rate of evaporation is as high as one inch in two days when a hot wind is blowing. "The mean rate of evaporation on the Coromandel Coast for the whole salt season is considered to be one inch in three days and numerous experiments of the author (Ratton) confirm this conclusion. Nevertheless for the sake of keeping this estimate within safe limits, it will be taken at 1 inch in five days, or say 6 inches a month. At San Francisco Bay during the summer the following evaporation of sea water was noted by Phalen —

	Evaporation.
	Inches
April	3 38
May	5 31
June	6 62
July	7 81
September	4 94
October	2 94
<hr/>	
Total	38 81

Absorption — There are no regular observations taken of loss in brine by absorption in channels, condensers and pans. No analogy could be drawn from observations recorded by Buckley for fresh water reservoirs. In Salt works the heavier density brines are not so rapidly absorbed as in the case of fresh waters. The absorption is considerably checked by the separation and deposit of Calcium Sulphate. For this reason at the end of the season and in older works there is very little loss of brine by absorption. In well constructed salterns ten per cent is usually allowed for the loss by absorption.

Trough Experiments. — In order to determine the rate of evaporation per day in Kathiawad and the influence of density of the solution on the rate of evaporation on open surfaces under Indian conditions, a series of experiments were carried out in open troughs. The

following meteorological readings were taken side by side at the same place. These figures will give an idea of the influence of the various causes which accelerate or retard the evaporation of saline solutions. For this purpose several wooden troughs 48 2" \times 36 3" and 6" deep were used. These troughs had an exposed evaporating surface of 1,750 square inches. The troughs were made perfectly water-tight with pitch. The inner surface of the trough was black. As salt works are in full operation during February, March and April, and as in the month of March the weather factors are generally mean of the extremes, the readings will be of considerable value. During the period of observations the weather conditions were as follows —

	Dry bulb		Wet bulb		Temperature				Water in the Trough											
					Max	Min	Moving Creek water		M	F										
	M	F	M	F			M	F												
Feb 10-28	70	8	84	4	55	7	67	6	91	7	57	7	62	7	79	0	57	1	72	9
March 1-31	78	4	86	2	80	4	73	4	96	3	66	1	72	3	80	8	67	1	70	5
April up to 8	82	6	87	7	71	1	78	1	96	2	71	2	76	0	86	7				

M (morning) E (evening)

The direction of wind was throughout NE except in the beginning of April when it was SW. NE wind is very dry, its velocity ranges from 2 to 10 miles per hour.

The temperatures in the troughs varied from 50 85° F. The lowest was at sunrise and the highest at 4 p m. As the evaporation is rapid in brines of lower density, it was observed that the temperature of the brines under 12° B were also 10° F lower than those of higher density. The troughs were filled uniformly in each experiment. A depth of 4 inches water was taken at the commencement of the experiment. This quantity measured 117 litres. Each litre corresponds to 1 091 division on 1/32 inch scale. The exact inches evaporated were determined from the number of litres remaining at the end of every 24 hours. Thus it has been possible to determine very accurately the rate of evaporation per

day to within 1/32 inch The following is the summary of the trough experiments —

Number of days to reach saturation 25° B		12 30
Water evaporated	litres	102 45
Brine remaining	„	14 55
Average evaporation per day	„	8 33
Evaporation per sq ft per day	galls	0 16
Quantity of salt recovered from 117 litres	lbs	7 7
Calculated quantity of salt in 117 litres	„	9 3
Salt percentage recovered	„	83
Bittern remaining	„	8 9
Number of days required for evaporation between 24—30° B		3
Salt obtained per day	lbs	2 5
Salt obtained per sq ft	„	0 21

The evaporation varied as follows —

	Evaporation	
	Inches	Average daily
February	10/32—8/32	9/32
March	12/32—10/32	11/32
April	14/32—10/32	12/32
Mean		11/32
Monthly inches		10 3

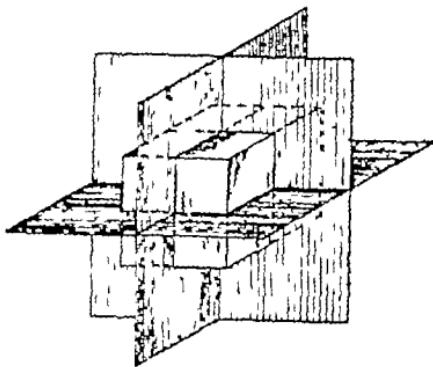
This figure corresponds exactly with Ratton's observation, *viz*, 1 inch in three days

It must be noted that this rate of evaporation of brine is considerably higher than the rate of evaporation of fresh water given by Strange, *viz*, 5 inches per month. He, however, allows 8 inches per month or a total of 32 inches for four months of hot weather. In a dry place like the Rann of Cutch, where during the hot weather the temperature in the shade very often reaches 112° F., and where during the eight dry months of the year the wind is mostly NW the following will be the rate of evaporation —

	Monthly inches	Daily
September ($\frac{1}{2}$ month)	5	0.33
October	11.5	0.38
November	10.5	0.35
December	10	0.33
January	10.5	0.35
February	10	0.33
March	11	0.37
April	12	0.40
May	16	0.53
June ($\frac{1}{2}$ month)	6	0.40
Total of dry season	102.5	
Mean of dry season	11.4	

These figures have subsequently been verified by the trough experiments now being carried out at Kuda. To provide for all the variable meteorological factors, the average rate of evaporation may be taken at 1/3 of an inch per day for the whole of the dry season during which salt manufacture by solar evaporation is carried out.

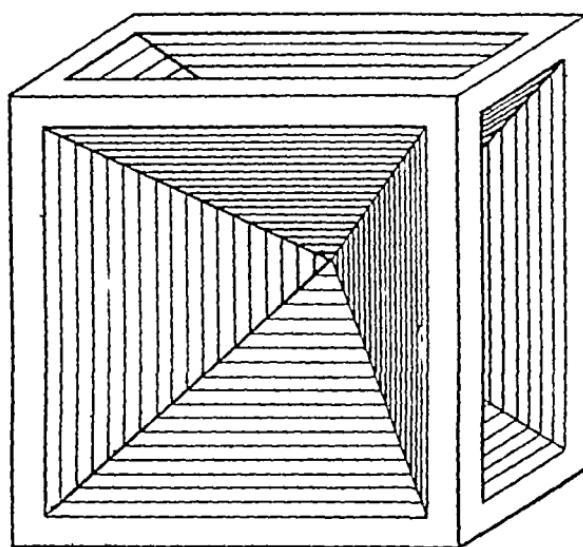
Watt's Dictionary of Economic Products (Larger Edition, 1893) states that,—“the mean rate of evaporation of sea water in salt works is one vertical inch in three or four days, or 8 inches per month.”

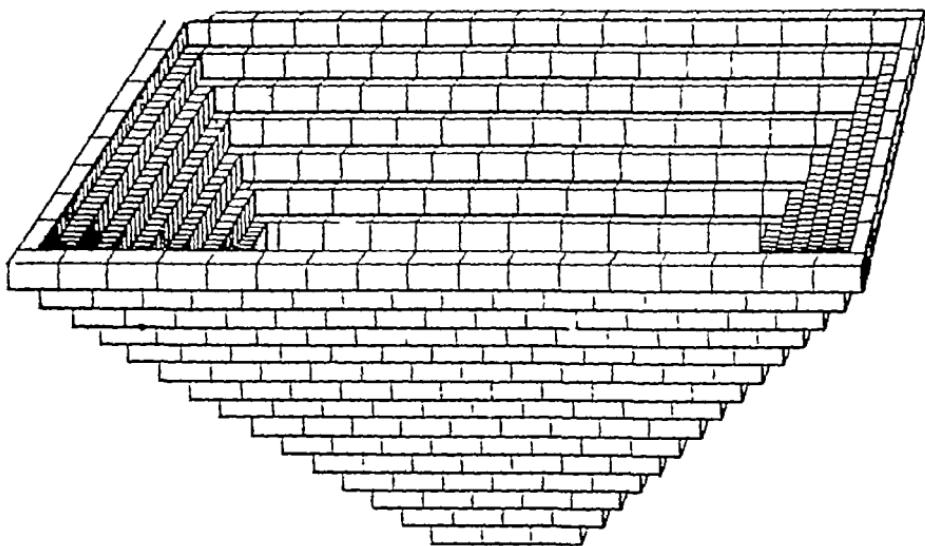

Crystallization of Salt—When a solid separates out on cooling or concentration of a saturated solution it assumes regular geometrical forms bounded by plane faces. These solid symmetrical forms are known as crystals. Every chemical substance of definite composition which crystallizes from solution has a specific crystalline form characteristic of that substance. This form never changes. “In whatever manner, or under whatever circumstances a crystal may have been formed, whether in the laboratory of the chemist or in the workshop of Nature, in the bodies of animals or in the tissues of plants, up in the sky or in the depths of the earth, whether so rapidly that we may literally see its growth or by the slow aggregation of its molecules during perhaps hundreds or perhaps thou-

sands of years, we always find that the arrangement of the faces of the crystals, and therefore its other physical properties are subject to fixed and definite laws"—(Gurney). When a crystal is suspended in a saturated solution by means of a fine thread it grows uniformly in all directions and the ideal form is obtained, but under ordinary conditions there are various factors which influence the growth of the crystals —

- (1) If the concentration of the solution is not uniform, the growth of the different planes is not uniformly rapid and the crystal develops abnormally
- (2) If the crystal rests on one plane on the surface of the vessel, then that face is not fully developed. Flat crystals parallel with the bottom of the vessels result. The formation of flat blocks of salt in French, American and Aden salt works is due to the crystals not being disturbed in the liquid during their growth by accretion. If the crystals and the solution be stirred from time to time as in the case of Baragra salt a uniform growth in all directions will result
- (3) A cubical crystal sometimes grows rapidly in one direction resulting in needle-like or bar-like form. Sometimes only two faces grow and in that case the growth is like flakes or plates, as in the case of Ghasia Salt, when in all the three directions the crystal is a perfect cube as in the case of a fully developed Baragra salt.
- (4) The formation is rapid if the solution is very concentrated. Temperature and concentration conditions of solution must be determined for each salt to obtain the best results.
- (5) Rapid crystallization results in the formation of smaller crystals.
- (6) The growth may be changed by the presence of other dissolved substances
- (7) Crystallization in motion gives better and more rapid results than crystallization in repose. The crystals

thus obtained are purer than crystals obtained in static conditions


Common Salt Crystals—Sodium Chloride forms symmetrical cubic crystals having nine planes of symmetry. Three are indicated in the fig 7 and six others are obtained by taking planes diagonally through three faces of the cube


PLANES OF SYMMETRY
SODIUM CHLORIDE
FIG 7

Salt crystals obtained by spontaneous evaporation of sea water or brine without much disturbance are conical or hopper shaped. These crystal grains can be altered to some extent by constant stirring which separates the tiny cubes forming the cone or hopper, and also by the addition of alum and the presence of magnesium sulphate or calcium sulphate. The effect of these substances is to form very hard large coarse crystals. When the salt crystals are formed in the presence of soluble sulphates as in the case of salt from sea water or brines, or when alum is added, the salt has the first tendency to crystallize in hollow cubes (Fig 8) on the surface of the water. The cubes grow gradually by the addition of other smaller crystals around them. The growth is in the shape of a hopper (Fig 9), and when the aggregate is sufficiently heavy, it settles down to the bottom of the pan. If the aggregate is disturbed by stirring with the help of a rake or a spade the crystals separate out, and each one in turn begins to grow. If, on the other hand, a fine grained salt is

required gelatine or grease is added. Salt, if badly prepared has the property of becoming hygroscopic owing to the presence of slight

SALT CUBES
FIG. 8

SALT CRYSTAL
HOPPER-SHAPED
FIG. 9

impurities of magnesium chloride which remain coated on its surface after it is removed from the bitters in the pan. If the salt crystals are well washed the hygroscopic property is considerably reduced. However carefully salt is prepared it shows a tendency to stick together in lumps. In the preparation of Cerebros table salt 3 per cent phosphate is added in the form of bone meal to prevent the salt from forming lumps. Under identical conditions of temperature, concentration and substances in solution salt will separate in only one form of crystals. The size and the general form will depend entirely on the mode of preparation. Given brine of the same composition, it is possible to manufacture any grade of salt by a variation in the method of recovery.

TECHNOLOGY OF SALT

The process of obtaining salt (sodium chloride) and other substances which are dissolved in sea water or natural brines is entirely one of gradual evaporation and fractional separation of solids at different degrees of concentration. Most of the natural brines contain the same salts as those found in sea water. If these brines are reduced in strength to the same density of sea water, the composition of the two is very nearly alike. The weights of the total dissolved solids are in both cases within very narrow limits. The diagram Fig 10 shows the relation between Volume and Density of the sea water at different stages of concentration.

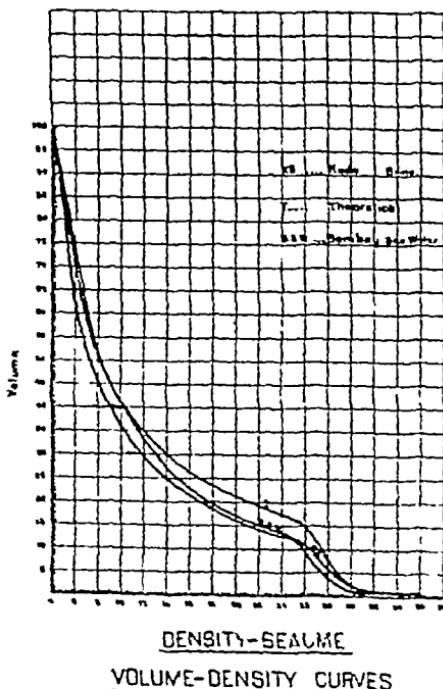


Fig 10

TABLE SHOWING CONTRACTION IN VOLUME BY EVAPORATION OF DRINKS TO DIFFERENT DENSITIES

n	3 0	10	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	38 5	38 3		
3 0	100																											
6	0.2	29																										
10	36	72	100																									
11	33	11	00	30																								
12	20	50	80	33																								
13	26	72	276																									
14	24	91	67	81																								
15	23	11	62	94	110																							
16	21	31	59	93	102	06	100																					
17	19	83	54	91	86	82	03	07	100																			
18	18	62	50	44	80	1	80	02	03	40	100																	
19	17	37	47	30	75	15	81	40	87	56	63	76	100															
20	16	30	44	65	70	92	76	01	82	04	88	40	04	30	100													
21	15	24	41	50	65	34	71	50	76	78	82	26	87	74	92	96	100											
22	14	26	38	84	61	07	66	01	71	90	77	00	92	12	03	.8	100											
23	13	44	56	60	58	16	63	02	67	76	72	56	77	41	82	00	88	20	04	20	100							
24	12	78	34	81	55	31	59	98	04	45	69	01	73	60	77	98	93	90	80	04	05	10	100					
25	12	13	33	03	52	48	58	24	01	16	05	48	09	84	73	98	70	60	85	06	00	24	04	80	100			
26	1	001	5	177	8	224	8	921	0	53	10	27	10	05	11	60	12	47	13	13	14	15	14	87	15	04	100	
27	1	420	3	884	0	170	6	601	7	10	7	69	8	21	8	70	9	36	10	00	10	01	11	15	11	70	75	00
28	1	327	3	014	5	746	6	272	0	69	7	17	7	65	8	10	8	72	0	31	0	88	10	30	10	02	09	85
29	1	206	3	284	5	218	5	658	0	68	6	51	0	94	7	30	7	01	8	46	8	07	0	43	0	04	63	43
30	1	088	2	983	4	703	5	100	5	36	5	88	0	27	6	04	7	14	7	63	8	09	8	51	8	97	57	24
31	0	976	2	642	4	198	4	552	4	89	5	24	5	50	5	92	6	37	0	80	8	80	7	09	51	02	68	07
32	0	810	2	230	3	563	3	843	4	13	4	42	4	72	4	00	5	37	5	74	6	00	6	40	6	75	43	08
33	0	393	1	070	1	081	1	844	1	98	2	12	2	26	2	39	2	58	2	70	2	92	3	07	3	24	20	67
34	0	082	0	223	0	351	0	385	0	41	0	44	0	47	0	50	0	54	0	58	0	61	0	67	4	31	5	75
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
38	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

* Drop in density on Separation of Solids.

Density of Liquids—The density of a liquid is expressed in different terms Specific gravity is the number, which expresses the relation of the weight of a given volume of the liquid to the weight of the same volume of distilled water at a temperature of 4° C In order therefore to calculate the specific gravity of a body it is sufficient to determine its weights and that of an equal volume of water and then to divide the first weight by the second, the quotient is the specific gravity of the body In the usual works practice, specific gravity is determined by means of a hydrometer These hydrometers consist of hollow-metal or glass cylinders loaded with lead or mercury to which is attached a stem marked with divisions which indicate at the level of a liquid the specific gravity directly As specific gravity is not the same at different temperatures, the hydrometers are marked with degrees Centrigade or Fahrenheit at which they are calibrated

In salt works practice, Beaumé's hydrometer is universally employed The graduation of this instrument is made as follows It is so constructed that when immersed in pure distilled water, the stem dips into the water nearly at the top This point is marked zero A solution of 15 parts of salt in 85 parts of water is made and the instrument immersed in it The new point at the level of the brine is also marked and the distance between the two points divided into two equal divisions or degrees Each division indicates one per cent dissolved salt The graduation is continued to the stem upto 40 divisions in salt works practice

There is another hydrometer known as Salimeter, which is used in determining the density of saline solutions The zero point on Salimeter is determined with distilled water and its lower point determined with the salt solution containing 26 5 per cent of salt at 20° C at which point it is completely saturated The distance between the two points is divided into 100 equal parts, or Salimeter degrees In some places Twaddell's hydrometer is used It is graduated in such a manner that the reading or number of degrees on the Twaddell hydrometer stem when multiplied by 5 and added to 1,000 gives the Specific Gravity It will be seen from these des-

criptions that in the case of Beaumé, Twaddell and Salimeters the graduations are entirely conventional. For the conversion of the readings by these different hydrometers into Specific Gravity the following formulæ are used —

Specific Gravity compared to water at $15^{\circ} C = 1$

$$A \text{ Specific Gravity} = \frac{144.3}{143.3 - n}$$

where $n = {}^{\circ}B$

$$B \text{ Specific Gravity} = \frac{1 + 5({}^{\circ}Tw)}{1000}$$

When the solution contains other substances besides sodium chloride or salt the hydrometer readings do not give a correct idea of the percentage of sodium chloride dissolved. But for all practical purposes the Beaumé's hydrometer is of considerable value in salt works.

Concentration of sea water and brines—Stages.—The process of concentration may be divided into seven stages (Fig 11). Each stage represents a distinct change in the resulting liquid —

- (1) Between $3.9^{\circ}B$ and $10.0^{\circ}B$) Unsaturated
- (2) „ 10.0 and $17.0^{\circ}B$)
- (3) „ 17.0 „ $24.5^{\circ}B$
- (4) „ 24.5 „ $29.5^{\circ}B$
- (5) „ 29.5 „ $35.0^{\circ}B$
- (6) „ 35.0 „ $37.0^{\circ}B$
- (7) „ 37.0 „ $38.5^{\circ}B$

First Stage—Sea water is generally found to have a Specific Gravity of 1.025 to 1.029 at $25^{\circ} C$ corresponding to 3.5 to $4.0^{\circ}B$. Usually we get on the Indian littoral $3.9^{\circ}B$. By gradual evaporation of sea water the original volume is reduced to 37 per cent when the density reaches $10^{\circ}B$. From the diagram it will be noticed, that there is a slight difference between the curves obtained from theoretical calculations and the curves obtained from the actual observation of concentration experiments of sea water and natural

brine. This slight difference is due to errors in observation and manipulation and to the gradual escape of dissolved gases during the progress of concentration. Hunter (Thorpe) has shown that the

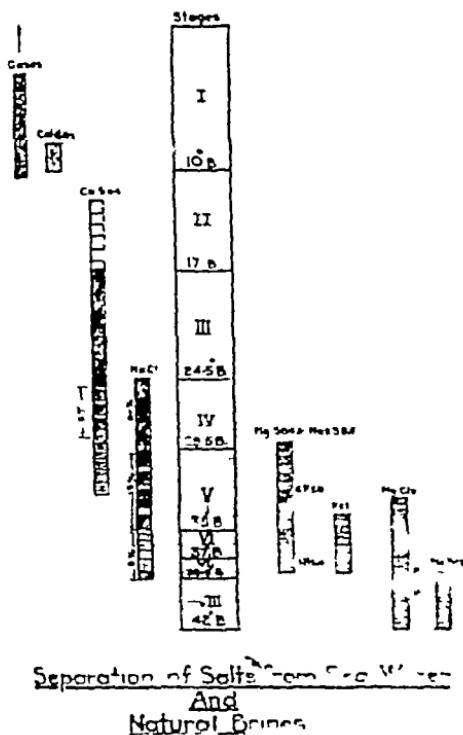


FIG 11.

volume of gas dissolved in water is 2.2—3.5 volumes in 100 volumes of water

Volume of water	CO ₂ per cent	O per cent	N per cent
2.2 consists of	28.62	49.44	21.94
3.5 do.	48.28	17.22	34.5

The dissolved gases are not entirely removed in open surfaces during solar evaporation. The difference between the theoretical and the observed curves at higher concentration is also partly accounted for by the removal of water with the separated salts. Usually salt contains 2.5 to 5.5 per cent of water not as a constituent but as an intermixture. Up to 10° B the first salt that is

thrown out from the solution is Calcium Carbonate. It is extremely insoluble in water. Its solubility at 30° C is only 0.0052 grms in 100 grms of water. As Calcium Carbonate is abundantly found in nature, its separation and recovery in salt works is of no practical value.

Second Stage After the separation of Calcium Carbonate the liquid remains unsaturated till it reaches a density of 17°B. The original volume of the sea water is now reduced to 20 per cent or one-fifth of the original. Gypsum and the remaining Calcium Carbonate and sometimes also Magnesium Carbonate are very often noticed to separate out at 12 B.

Third Stage—When the concentration has reached 17°B, Calcium Sulphate begins to separate out as gypsum $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$. The separated gypsum at first floats on the surface of the liquid as a thin grey film and when it has sufficiently accumulated, it settles down to the bottom of the pan carrying along with it a little salt which just begins to come out when the major portion of the gypsum ceases to separate. The separation of gypsum continues upto 25°B. Manzella has shown that the total amount of Calcium Sulphate originally present in the sea water is not entirely thrown out of the solution even when the brine reaches a concentration of 25°B as will be seen from the following table —

Separation of Calcium Sulphate

°B	Remaining dissolved	Total deposited	Percentage removed
3 5	1 749		
25 0	0 283	1 466	83 8
28 5	0 015	1 734	99 1
32 4	0 000	1 749	100

Only about 84 per cent of the dissolved Calcium Sulphate separates out during the second stage of evaporation. When natural brines

are found having a density between 17—25°B, they are generally deficient in Calcium Sulphate. In the Rann of Cutch, from which Kharaghoda and Kuda brines are obtained, there is a layer of about 3" of gypsum under the clay strata. This Calcium Sulphate seems to have been separated out from the original sea water by its spontaneous evaporation. Similar deposits are found at Stassfurt and in the United States in Virginia-Saltville and at the salines of the Eastern Texas and in many other places. In large sea salt factories Calcium Sulphate gradually accumulates in the condensers or preliminary evaporating basins where the layer of gypsum in course of time reaches a thickness of about 2". In French salt works and at Aden this deposit is removed from time to time. The accumulated quantity is so great that it is difficult to dispose of the same advantageously. For every 100 tons of salt obtained from the sea water 4 to 5 tons of gypsum are obtained. At Aden in the absence of any commercial demand or technical uses, it is spread out in the making of roads and in making impervious floor or bottom of newly constructed crystallising beds. Calcium Sulphate whether it is used specifically in the preparation of floors or beds of the crystallising pans, is always found there in fairly thick layers. The Calcium Sulphate which separates out in the crystallising pans is part of the Calcium Sulphate left over after 84 per cent of the original bulk was removed before the brine reached a density of 25°B.

The volume of the sea water at this stage is reduced practically to one-eighth of the original.

Fourth Stage—This stage begins at 24.5°B. Pure salt solution is saturated at 26°B when the percentage of salt in solution is 26.5. But in the presence of other dissolved salts, the solution behaves as if it is saturated at 24.5°B, when salt begins to separate out. As the evaporation proceeds for every 100 grms of water evaporated from the saturated solution, 36.5 grms of sodium chloride are thrown out of solution. The solubility of sodium chloride being 36.5 grms at 30°C in 100 grms of water, the percentage of salt present in the saturated solution would be —

$\frac{36.5}{(100+36.5)} = 26.74$ per cent by weight. Thus for every

100 grms of saturated solution we have 73.26 grms of water and 26.74 grms of salt. If 1,000 grms of saturated solution are gradually evaporated, then for every 100 grms of water removed the following quantities of salt will be separated from and remain in solution —

Water	Salt in sol	Salt separated	Per cent of salt removed.
732.6	267.4		
632.6	230.9	36.5	13.65
532.6	194.4	73.0	27.30
432.6	157.9	109.5	40.95
332.6	121.4	146.0	54.60
232.6	84.9	182.5	68.25
*132.6	48.4	219.0	81.90
32.6	11.9	255.5	95.55
7.6	2.8	264.6	98.95
2.6	1.0	246.4	99.63
		267.4	100

From table on page 43, it will be noticed that the solution remains between 25 and 26° B for a very long time. The rise in density is not rapid on account of the separation of the dissolved salt. The density begins to be appreciably higher than 26 after the separation of over 50 per cent of the dissolved salt. The density fluctuates during the day and the night. When during the day the evaporation is rapid under the influence of the sun and the winds, the brine becomes slightly supersaturated, but when night falls and the temperature of the air is lower there is a drop in the temperature of the brine due to its cooling, and the consequent separation of the excess of salt from the super-saturated solution. This drop in the readings of the density taken in the evening of the previous day and the next day in the morning is very noticeable. As the concentration proceeds, more and more salt is thrown out of the solution till the brine reaches a density of 28.5°—29° B. It is well

* Density 29.5° B

known that the total quantity of salt originally present in the brine is not entirely separated when the density has reached 28 5°B.

Separation of Sodium Chloride.

°B	Total dissolved	Total separated	Per cent separated
3 5	29 696		
25 0	29 696		
28 5	8 889	20 807	70 0
32 4	3 993	25 703	86 6

The yield under Indian conditions would be different, but Manzella's figure for 28 5° B compares very favourably with the calculated figure, for 29° B *viz*, 75 73, and with the actual obtained from trough experiments at 30° B, *viz*, 83. The salt obtained upto 28 5° B is generally of the following composition —

	Brine salt	Sea salt
NaCl	97 40	97 11
CaSO ₄	0 58	1 10
MgSO ₄	0 15	0 23
MgCl ₂	0·08	0 04
Insoluble residue		0 05
Water	1 71	1 40
	99 92	99 93

These typical analyses show that Sodium Chloride is associated with other salts, such as Calcium Sulphate, Magnesium Sulphate and Magnesium Chloride. Though Potassium Chloride is not shown in these two typical analyses, it is also found to the extent of 0 012 per cent. Magnesium Chloride renders the salt hygroscopic and the presence of the moisture over one per cent is accountable to this salt. Magnesium Chloride also intensifies the salty taste. If the salt is washed with weak brine or fresh water, most of the above impurities, which are found in the residual coating of the bittern remaining on the surface of the crystals, are removed and the salt thus washed is 99-99 5 per

cent pure. The fourth stage is completed when the concentration reaches to 28-29°B. The concentration is not carried further as the salt that separates out at this higher concentration is very impure and difficult to separate from the adhering bitters. For this reason, at all the salt factories, the process of recovering salt is stopped when the concentration has reached 29°B. At this stage the remaining bittern is only 2 per cent of the original volume and its weight is practically the same as the weight of the 90-94 per cent salt recovered. The remaining liquid is known as 'bittern'. Ballard, the French Chemist, was the first to suggest the recovery of these valuable by-products from bitters. During the Great War bitters received considerable attention in all the leading countries as a very valuable source of several by-products, particularly Potassium, Magnesium and Bromine.

Composition of Bitters—If the composition of sea water or natural brine is known it is possible to calculate the composition of the resulting bitters. Assuming that the average composition of sea water is as given below, the composition of the brine and bittern would be as given in the following table—

	Sea water of average composition at 4° B parts per 1000	Percentage of total solids
Calcium Carbonate	0 035	0 10
Calcium Sulphate	0 735	2 10
Sodium Chloride	27 300	78 00
Magnesium Sulphate	2 625	7 50
Potassium Chloride	0 749	2 14
Calcium Chloride	0 070	0 20
Magnesium Chloride	3 185	9 10
Magnesium Bromide	0 301	0 86
	—	—
Total	35 000	100 00
Water	965 000	
	—	—
	1000 000	

TECHNOLOGY OF SALT

(Calculated).

Concentrations:

Composition of Sea Brine at different Concentrations										
	Parts per 1000 Grams									
Degrees Beaufort	3	5	10	15	20	25	26.5	26.75	27.75	29
Sodium Carbonate	0.035	0.058	1.180	1.016	0.972	1.106	0.902	0.707	0.423	0.132
Sodium Chloride	0.735	2.001	118.130	172.000	211.540	237.470	220.020	176.016	123.010	123.010
Sodium Sulphate	27.300	74.015	118.700	10.010	21.011	25.070	30.011	60.196	35.208	35.208
Magnesium Chloride	2.025	7.205	1.241	4.500	0.175	7.152	10.541	19.749	3.300	3.300
Magnesium Sulphate	0.749	2.011	0.741	0.427	0.579	0.000	0.080	1.848	149.974	149.974
Potassium Chloride	0.070	0.191	0.302	19.432	20.250	30.408	41.819	83.952	14.100	14.100
Magnesium Bromide	1.185	8.074	11.781	1.830	2.481	2.873	4.215	7.012		
It is computed from total in 25° B										
35.000										
Magnesium Chloride	98.794	141.712	210.802	299.052	301.757	124.054	360.195	432.025		
Magnesium Bromide					15.145	45.130	60.381	7.3.726		

per cent of salt separated from total in 25% B

SALT

Analysis of Bitters—28 to 30° B
(American Salt Works—Phalen)

GRAMS PER LITRE

	1	2	3	4	5	6	7	8	9	10	11	Average
Calcium Carbonate	20.0	4.0	7.4	2.3	1.7	3.3	0.6	3.7	Trace			3.37
Calcium Sulphate	156.0	203.0	102.7	94.6	7.4	21.1	240.0	162.7	160.4	140.14	54.72	135.38
Sodium Chloride	75.0	33.0	32.8	65.0	01.5	75.3	35.8	60.7	42.7	71.65	70.55	50.84
Magnesium Sulfate	31.4	15.6	25.5	25.2	27.8	41.0	66.7	22.5	1.3	76.09		28.91
Potassium Chloride	01.0	65.0	63.8	144.5	171.1	250.6	4.2	117.5	63.5	128.03	143.90	113.00
Magnesium Chloride	8.6	3.4	3.4	3.4	3.4	2.3	2.3	3.2		2.07		3.50
Calcium Chloride	2.0									27.08	14.54	

Analysis of Bitters between 34-36° B

KHARAGHODA

FRANCE

Grms. per litre

Grms. per litre

	1	2	3	1	2	3	Average
Calcium Carbonate			0 79				0 79
Calcium Sulphate			1 70				1 70
Sodium Chloride	10 80	6 47	16 76	31 73	34 0	51 18	25 16
Magnesium Sulphate	39 65	13 21	32 86	102 00	82 0	76 5	57 62
Potassium Chloride	1 73	1 35	8 25	37 00		54 24	20 51
Magnesium Chloride	373 50	448 41	360 84	237 50	260 0	314 68	332 42
Magnesium Bromide	7 24	11 86	5 50		4 0		7 15
Calcium Chloride					41 0		41 00

Bombay Sea Water Bittern.

Density 29 25° B.

RADICALS

	Grms. per litre.	Per cent.
K	18 90	1 51
Na	55 07	4 41
Ca	Traces	Traces
Mg	43 68	3 49
Cl	198 52	16 89
SO ₄	58 92	4 71
Br	1 89	0 14
Total	376 89	30 15

CONVENTIONAL COMBINATION

	Grms per litre	Per cent
Calcium Sulphate		
Sodium Chloride	140 14	11 21
Magnesium Sulphate	73 65	5 89
Potassium Chloride	36 09	2 89
Magnesium Chloride	128 80	10 30
Magnesium Bromide	2 07	0 17
Total	380 75	30 46

Fifth Stage—When the bitterns are drained out from the crystallizing pans at 29 5°B they contain various salts in solution. These salts are at 29 5°B very near their point of saturation. For this reason the bitterns require very careful treatment. As the original volume of sea water has contracted to 2 per cent when it has reached 29 5 B It will be more convenient to take the bitterns of 29 5 B as the starting liquid for the calculation of volume in the subsequent stages of evaporation. As the evaporation proceeds, solids continue to separate out. The deposits obtained up to 36°B consists mainly of sodium chloride with a small percentage of magnesium and potassium chlorides and sulphates. It will be noticed from the solubility curves that magnesium sulphate and potassium chloride are soluble practically to the same extent at the ordinary temperature of the air (25°C). Their separation from saturated solution is very difficult. The separation of various dissolved solids from bitterns has been the subject of a very close study by Van't Hoff. His classical researches on the subject must be studied in this connection. Hildebrand has also contributed a very valuable paper on the subject. This paper is reprinted in extenso as an appendix to this report.

Bitterns from Bombay sea water, from Kharaghoda and Dhrangadhra brines have been very closely studied in my laboratory

Deposits obtained at different concentrations of the bitters were separated and examined. In the fifth stage from 29 5°B to 35°B most of the sodium chloride, which remained dissolved in the bitters, separates out. Manzella has shown that between 28 5—32 5°B 16 per cent more of the sodium chloride separates out, whereas according to Macnab sodium chloride separates out as follows —

	Sodium Chloride separated.	Per cent.
0°B		
26 25	3 2614	
27 00	9 6550	
28 50	7 9960	70 4
30 20	2 6240	
30 24	2 2720	
35 00	1 4040	
	—	
Total	27 1074	91.3
Total salt remain- ing in 36° B	2 5885	8.7
Total	29 6959	

SALT

BETWEEN 31 & 42° B

ANALYSIS OF CROPS FROM BOMBAY SEA WATER BITTERS

Crop No	° B	Sodium Chloride			Potassium Chloride	Magnesium Chloride	Magnesium Sulphate	Moisture	Weight oz
		Magnesium Chloride							
1	31 to 34	85	55		4 12		1 6	7 2	1 1
2	34 " 36	81	98		4 22		2 56	12 56	1 " 4 "
3	34 " 36	50	81		6 33		12 17	16 94	4 " 4 "
4	35 " 36	7 15			5 74		40 25	41 48	3 " 4 "
5	36	10 93			4 05		12 04	36 40	3 1/2 "
6	36	12 75			10 93	18 93	22 60	22 60	1 1/2 "
7	36	18 43			4 93	18 10	31 21	31 21	1 " 1 "
8	36	21 64			3 91	23 16	31 07	13 86	1 1/2 "
9	36 to 37 1/2	20 85			7 76	23 15	6 32	24 06	2 1/2 "
10	37	20 79			23 81	22 73	23 33	25 86	2 1/2 "
11	38 to 39	11 50			12 00	31 78	31 78	48 14	2 lbs 1 1/4 oz
12	39 " 42				7 61		1 25		

RECOVERY OF SODIUM FROM BOWEN SEA WATER BITTERS (KATHIAWAD COAST)

Crop No	Concentration		Volume of Bittern			Crop			Remarks			Dried samples per cent		
	from B	to B	Boiling	Distilling	Evaporated	Percent of original water	Weight of crystals as it is	Weight of dried crop	NaCl	MgCl ₂	KCl	MgSO ₄		
1	29.75	31.70	3,860	2,150	95.0	850	28.13	105	13.0	17.5	0.2	0.05	2.73	
2	31.70	33.8	2,170	1,715	415	1,285	42.91	20.21	1.40	0.0	0.17	3.64	1.32	
3	33.9	35.70	1,715	1,375	150	1,005	55.50	22.15	15.5	7.1	8.4	0.8	8.15	23.43
4	35.00	36.25	1,195	1,150	18.1	1,970	0.1.00	13.85	11.0	4.1	0.0	Drop from 36 to 35° B	8.70	7.70
5	36.25	37.00	1,150	1,030	12.0	1,070	65.63	10.11	5.5	7.1	2.4	14.11	0.04	34.50
6	37.00	34.75	1,030	1,000	2.1	1,004	60.10	2.13	7.0	3.8	12	NH	8.45	20.58
7	34.75	35.50	1,000	705	24.1	2.215	71.10	23.0	15.9	8.8	7.1	14.17	25.02	27.34
8	35.50	36.0	705	605	10.0	2,315	77.83	13.09	6.7	7.0	5.1	24.25	21.24	27.88
9	36.0	38.25	605	550	11.5	2,150	91.66	17.20	7.5	10	10	8.02	40.21	25.36
10	38.25	39.25	550	510	40	2,490	83.00	7.27	15	7	8	12.00	31.71	12.00
11	39.25	40.0	510	425	18.5	2,075	80.16	7.27	18.0	11.7	7.2	2.82	0.9.29	1.77
12	40.0	40.6	425	200	125	2,800	91.11	0.2.6	11.0	6.0	5.7	0.7.82	1.410	2.18
									Total	703	713			

ANALYSIS OF THE CROPS OBTAINED FROM KUDA BRICKS

	20.5—32° B	I 32—34° B	II 32—34° B	III 1—36° B	IV 36—38° B	V 38—35° B	REMARKS
		Per cent	Per cent	Per cent	Per cent	Per cent	Per cent
Sodium (Na)	41.2	41.13	6.42	1.22	1.05		
Potassium (K)	0.29	0.65	13.00	0.53	0.00		
Magnesium (Mg)	0.03	10.13	10.01	10.60	10.15		
Chlorine (Cl)	60.06	48.73	40.96	30.82	31.53		
Sulphate (SO ₄)	2.22	2.38	3.18	3.9,	1.09		
Calcium (Ca)	Traces						
Sodium Chloride	82.03	70.19	10.13	3.00	2.68		
Potassium Chloride	0.56	1.05	24.84	1.05	0.17		
Magnesium Chloride		0.24	25.70	38.05	10.00		
Magnesium Sulphate	2.77	2.07	3.08	4.03	1.18		
Magnesium Oxide	14.12	15.76	0.04	Traces			
Calcium Sulphate	Traces						
Water by difference	0.61	0.70	2.11	3.28	5.50		

No. B—Crops Nos I and II were dried in the air oven at 110-115°C for nearly 10 hours. Duration of drying was decreased from 10 to 4 hours in No. III, but even then Magnesium Chloride did not dry to a certain extent and consequently the last two crops Nos IV and V were not dried in the oven at all. The crystals of the crops Nos IV and V were dried with the help of the filter paper and at once weighed in a weighing bottle.

RECOVERY OF SOLIDS FROM KUDA BRINES

Concen- tration No. of Crop	Volume of Liquid litres	Volume of Liquid litres	Liquor recovered No. of Crop	Percentage recovered No. of Crop	Weight in gram No. of Crop	Solubility of salt No. of Crop	Weight of salt No. of Crop	Crop No. of Crop	Dry samples.				REMARKS
									NaCl	KCl	K ₂ SO ₄	MgSO ₄	
1.20	29.5	64,000	7,400	56,600	88.4	15,000	2,40	12,750	82.43	0.67	2.78	14.10	Calcium in traces
1.20	32.1	7,400	6,000	58,400	81.1	4558	70.84	0.24	1.06	2.00	15.80	Grops Nos 2-5	
1.32	34.1	4,650	4,650	60,150	92.7	17.0	383.58	3.27	21.33	12.12	5.19	7.83	were dried in the oven at 110
1.14	1.18.6	4,650	3,575	1,075	80.425	94.4	23.1	77	4.44	1.15	1.15	1.15	for nearly 10 hours and
5.38	5.38.5	3,575	3,150	425	60,850	95.0	11.0	1,70.2	255	1.447	6.58	7.2	No. 4 for 4
6.38	5.36	3,150	1,550	1,800	62,450	97.6	50.1		fall from 18° R	2.310	4.6	Trace	hours and consequently most
7.16	38	1,550	315	1,235	63,085	90.5	70.7	1,300	2,00	6.075	10.48	0.39	of the Mg. Cl. had hydrolysed
							Total	10,823	3,020	16,603			Such being the case Nos 5 and 6
													were analysed as they were and the water was estimated difference

Total solids in the brine 20°B²⁴ 36 per cent
Theoretical quantity of the solids 18.075 grms
Quantity actually recovered 16.603

Mother liquor

Shortage

16.018
1,152 or about 5 per cent

315

From the tables showing the analysis of the various crops obtained from sea water and Kuda brines, it will be noticed that sodium chloride is the principal salt to separate out upto 35°B. It continues to come out at normal temperature in the subsequent stages. 97.1 per cent of salt remaining in the bittern at 29.5°B is removed when the concentration reaches 35°B. In the second deposit of sodium chloride thus obtained, there is a fairly large quantity of magnesium sulphate. If the deposit is recovered when the solution is at a higher temperature, *i.e.*, at the end of the day, most of the magnesium sulphate will re-dissolve into the bitterns owing to its greater solubility at higher temperature than sodium chloride.

Sixth Stage—This is a very important stage in the recovery of by-products. At this stage potassium salts and magnesium sulphate and also sodium sulphate are recovered if the process of separation is worked out carefully. From the solubility curves and the tables of solubility it will be noticed that magnesium sulphate and potassium chloride are of identical solubility. In the French salt works the bitterns of 35°B are allowed to cool spontaneously during winter till they reach a temperature of 11-12°C when magnesium sulphate separates out. In order to prevent the formation of carnallite which is likely to deposit, the temperature is very carefully maintained at 12°C and not allowed to go below this point. Three qualities of magnesium sulphate are obtained. These are described in the description of the French salt works. If after the removal of the deposits of magnesium sulphate the bittern is further cooled to 6°C and under by means of a refrigerating plant, a double decomposition takes place between sodium chloride and the remaining magnesium sulphate. Sodium chloride must be in slight excess than theoretically required for the reaction. If it is deficient it must be made up by the addition of the required quantity. The double decomposition results in the formation of sodium sulphate ($\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$) and magnesium chloride, at the end of this stage the original bittern is reduced to 57 per cent of its volume.

Seventh Stage.—This stage is in every way as important as the last. If it is desired to recover bromine from the bitters, it is advisable to pass chlorine in the bitters at this stage rather than at the final stage. It is found that bromine which occurs originally in sea water or brine mainly as magnesium bromide is gradually lost during the fifth, sixth and the seventh stages. This loss can be reduced to the lowest possible figure if high temperatures are not used in the process and the mother liquor treated with chlorine in the sixth or the beginning of the seventh stage. Chlorine replaces bromine in the bromides and converts them into chlorides. This operation is carried out in volvic stone towers. Chlorine may be generated by any one of the well-known technical methods. A description of the process as carried out in France and in America is given in the respective sections. After the recovery of bromine the mother liquor contains mainly potassium chloride, traces of sodium chloride and magnesium chloride. This liquid if heated and concentrated to 40°B, carnallite $KClMgCl_2 \cdot 6H_2O$ separates out. If any magnesium sulphate still remains in the liquid it also separates as kieserite. By fractional crystallization pure potassium chloride may be obtained from carnallite. This process as given above, for the by-products is modified considerably according to the quality of the by-products required, and consequently the description given above must be taken as in the nature of an outline of the process carried out. During the final stage the remaining mother liquor will contain mostly magnesium chloride. This is heated in open copper vessels upto 134°C and then gradually cooled to 120°C. At this temperature magnesium chloride containing six molecules of water remains in the liquid form. Any kieserite, sodium chloride or carnallite which has remained in the liquid separates out as a sludge. Magnesium chloride must be handled at this stage with great caution. If the temperature is not properly controlled, the salt is hydrolysed and magnesium oxide is formed. Hydrochloric acid escapes in the air, for this reason the process of melting magnesium chloride must be carried out in a well ventilated building.

By-Products obtainable from Salt Industry.—It has been shown that the first grade of sodium chloride recoverable up to 28 29° B is about 75 per cent of the total sodium chloride contained in the brine. For every 100 parts of sodium chloride obtained upto 28-29° B, the following by-products are obtained. If care is taken not to allow the temperature of the bitters to fall below 15° C, the whole of the magnesium chloride could be recovered with six molecules of water in the hydrated form, but if the bitters are exposed to air during very cold nights, part of the remaining sodium chloride will combine with magnesium sulphate, and sodium sulphate and a large proportion of magnesium chloride would be formed as a result of double decomposition.

Sodium Chloride (up to 29° B)	100 00
,, (separated after 29° B)	25 000
Magnesium Sulphate (7H ₂ O)	20 807
Potassium Chloride	2 896
Calcium Chloride	0 271
Magnesium Chloride (6H ₂ O)	27 608
Bromine	1 012

VI.

CONSTITUENTS OF SEA WATER AND BRINES

Properties and Uses

Calcium Sulphate.—It occurs widely distributed in Nature. As anhydrite, it is found associated with limestone deposits and in salt layers. The dihydrate is more plentiful as Alabaster and Gypsum or Selenite. When calcium sulphate is precipitated from its solution as in the case of salt manufacture, it separates out as a dihydrate or gypsum. If gypsum is heated to about 120 to 130° C it loses one and a half molecules of water of crystallization and forms the semihydrate $(\text{CaSO}_4) \cdot \text{H}_2\text{O}$ known as burnt gypsum or Plaster of Paris. Gypsum is largely used in various industries.

Crude form	Quantity in short tons	Value in \$
For Portland Cement	187,680	3,05,745
Paint material	1,281	1,300
Plaster material	29,516	77,860
Land plaster	27,972	91,883
Other purposes	7,484	11,630
Calcined		
For dental plaster	174	636
As plaster of Paris, wall plaster, etc	1,074,229	35,08,502
For glass factories	14,412	41,102
Portland Cement and other pur- poses	36,802	99,934
Total	1,389,550	41 38,560

Though there are numerous deposits of gypsum in India, its production is very small as compared with the production in other countries

1910	In 1000 short tons
United States	2,159
France	1,981
Canada	482
United Kingdom	95
Algeria	60
India	7

When finely ground gypsum is heated with finely powdered coal or charcoal or with carbon monoxide, it is reduced to calcium sulphide and carbon dioxide. When calcium sulphide is treated with water, it is decomposed with the formation of calcium carbonate and sulphuretted hydrogen which, in turn, may be ignited in air to give sulphur. These reactions are made use of in Germany in obtaining sulphur for making sulphuric acid. This process is used by Badische Anilin-und Soda Fabrik at Oppau. These works are fully described in the Journal of Chemical and Metallurgical Engineering 1921 and 1922.

Calcium sulphate is very insoluble in water, at 25°C 0.0208 and at 30°C 0.2096 grms are soluble in 100 ccs of solution. The effects of a foreign salt on a solution is to lower the vapour pressure of the solution at a given temperature. When gypsum is dissolved in the presence of sodium and magnesium chlorides, as is found to be the case in brines, the vapour pressure of the solution is distinctly lower than the vapour pressure of a solution of gypsum. In such cases a lower hydrate separates out. This explains the formation of anhydrites in the evaporation of brine. If the anhydrite forms on the surface and is in contact with moisture, it passes slowly in the dihydrate form or gypsum. The specific gravity of gypsum is 2.31. When plaster of Paris is wetted with one-third of its weight of water, it forms a plastic mass which sets in form in 15 to 25 minutes to a white porous hard mass. This setting is well known for making moulds and in plaster work. The slight expansion which

occurs during the setting of the plaster enables us to make a sharp reproduction of the details of the mould

Sodium Chloride.—Generally known as common salt. It is very widely distributed in Nature as rock salt known as Halite or dissolved in salt lakes as brine under the surface and in sea water. Pure salt is colourless and transparent. Salt crystallises in cubes. These crystals are anhydrous. A little sea water is mechanically held in the crystals. This causes the salt to decrepitate when heated. Sodium chloride melts at 801° C and sublimes at higher temperatures. 36.5 parts of salt are soluble in 100 parts of water at 30° C. The saturated solution thus contains 26.74 per cent of dissolved salts. Its solubility decreases in the presence of other more soluble salts, such as magnesium chloride, magnesium bromide, potassium chloride and magnesium sulphate. This lowering of solubility accounts for the salt separating at 24.5° B instead of 26° B in the recovery of salt from brines. Its hardness is 2.5, its specific gravity ranges from 2.1 to 2.6 that of pure crystals being 2.135. In storage pure $\frac{1}{4}$ to $\frac{1}{2}$ " cubes take 36 cu ft per ton or 62.5 lbs per cu ft smaller crystals require 33.4 cu ft per ton or about 67 lbs per cu ft. The weight of salt in a cubic foot will depend upon the nature of the crystals and the impurities contained. The rock salt of Mayo mines weighs 93 lbs to a cubic foot. In another case a compact natural block gave 131.44 lbs. Well formed dry sea salt weighs 60 lbs. The Madras sea salt weighs 38 to 52 lbs which is also the weight of Ghasia salt. The angle of repose in large salt heaps is 36 degrees.

Salt is used for a number of purposes. For culinary and for general domestic purposes salt is very largely used all over the world. In the Western countries the consumption per head of population is 16 lbs. In India it is 12 lbs per year, 40 per cent of the world's total production of salt is thus used. A small quantity is used for agricultural purposes, but the greatest use of salt is in the manufacture of sodium compounds such as soda ash, sodium sulphate, hydrochloric acid, caustic soda and other chemicals. Salt is also used in refrigerating plants and in

Though there are numerous deposits of gypsum in India, its production is very small as compared with the production in other countries

1910	In 1000 short tons
United States	2,159
France	1,981
Canada	482
United Kingdom	95
Algeria	60
India	7

When finely ground gypsum is heated with finely powdered coal or charcoal or with carbon monoxide, it is reduced to calcium sulphide and carbon dioxide. When calcium sulphide is treated with water, it is decomposed with the formation of calcium carbonate and sulphuretted hydrogen which, in turn, may be ignited in air to give sulphur. These reactions are made use of in Germany in obtaining sulphur for making sulphuric acid. This process is used by Badische Anilin-und Soda Fabrik at Oppau. These works are fully described in the Journal of Chemical and Metallurgical Engineering 1921 and 1922.

Calcium sulphate is very insoluble in water, at 25°C 0.0208 and at 30°C 0.2096 grms are soluble in 100 ccs of solution. The effects of a foreign salt on a solution is to lower the vapour pressure of the solution at a given temperature. When gypsum is dissolved in the presence of sodium and magnesium chlorides, as is found to be the case in brines, the vapour pressure of the solution is distinctly lower than the vapour pressure of a solution of gypsum. In such cases a lower hydrate separates out. This explains the formation of anhydrites in the evaporation of brine. If the anhydrite forms on the surface and is in contact with moisture, it passes slowly in the dihydrate form or gypsum. The specific gravity of gypsum is 2.31. When plaster of Paris is wetted with one-third of its weight of water, it forms a plastic mass which sets in form in 15 to 25 minutes to a white porous hard mass. This setting is well known for making moulds and in plaster work. The slight expansion which

occurs during the setting of the plaster enables us to make a sharp reproduction of the details of the mould

Sodium Chloride.—Generally known as common salt. It is very widely distributed in Nature as rock salt known as Halite or dissolved in salt lakes as brine under the surface and in sea water. Pure salt is colourless and transparent. Salt crystallises in cubes. These crystals are anhydrous. A little sea water is mechanically held in the crystals. This causes the salt to decrepitate when heated. Sodium chloride melts at 801° C and sublimes at higher temperatures. 36.5 parts of salt are soluble in 100 parts of water at 30° C. The saturated solution thus contains 26.74 per cent of dissolved salts. Its solubility decreases in the presence of other more soluble salts, such as magnesium chloride, magnesium bromide, potassium chloride and magnesium sulphate. This lowering of solubility accounts for the salt separating at 24.5° B instead of 26° B in the recovery of salt from brines. Its hardness is 2.5, its specific gravity ranges from 2.1 to 2.6 that of pure crystals being 2.135. In storage pure $\frac{1}{4}$ to $\frac{1}{2}$ " cubes take 36 cu ft per ton or 62.5 lbs per cu ft. Smaller crystals require 33.4 cu ft per ton or about 67 lbs per cu ft. The weight of salt in a cubic foot will depend upon the nature of the crystals and the impurities contained. The rock salt of Mayo mines weighs 93 lbs to a cubic foot. In another case a compact natural block gave 131.44 lbs. Well formed dry sea salt weighs 60 lbs. The Madras sea salt weighs 38 to 52 lbs which is also the weight of Ghasia salt. The angle of repose in large salt heaps is 36 degrees.

Salt is used for a number of purposes. For culinary and for general domestic purposes salt is very largely used all over the world. In the Western countries the consumption per head of population is 16 lbs. In India it is 12 lbs per year, 40 per cent of the world's total production of salt is thus used. A small quantity is used for agricultural purposes, but the greatest use of salt is in the manufacture of sodium compounds such as soda ash, sodium sulphate, hydrochloric acid, caustic soda and other chemicals. Salt is also used in refrigerating plants and in

a number of miscellaneous industries, *e.g.*, in the glazing of the coarser kinds of pottery and earthenware, the preservation of wood, fish, meat, butter, the curing of hides, the manufacture of soaps, the dyeing of textile goods the manufacture of inferior glasses used for wine bottles iron metallurgy and in a number of other industries

Magnesium Sulphate.—Magnesium sulphate of commerce is chiefly obtained from kieserite ($MgSO_4 \cdot H_2O$) At Stassfurt kieserite layer is found between carnallite and rock salt strata It can also be prepared from magnesite and sulphuric acid It occurs as kieserite in combination with potassium sulphate and magnesium chloride and contains six molecules of water Magnesium sulphate is also obtained from dolomite—a mineral containing magnesium and calcium carbonate If kieserite is dissolved in water, it takes seven molecules of water and forms a colourless crystalline salt readily soluble in water This salt is generally known as Epsom Salt It is efflorescent in dry air and begins to lose its water of crystallization at $150^{\circ}C$ 30 9 parts of anhydrous salt are soluble at $10^{\circ}C$ in 100 parts of water At $40^{\circ}C$ 45 6 parts of water are soluble If sodium chloride is obtained in the solution with magnesium sulphate, a double decomposition occurs on cooling the solution Two molecules of sodium chloride with one molecule of magnesium sulphate give one molecule of sodium sulphate and one molecule of magnesium chloride This reaction is made use of in the commercial preparation of sodium sulphate

Magnesium sulphate is generally placed on the market as colourless crystal of 1 6787 sp gr

Epsom salt or magnesium sulphate is used in the tanning and dyeing industries, and in the manufacture of paints and soaps, but its chief use is in the finishing of cotton goods Magnesium sulphate for finishing purposes must not contain any magnesium chloride, as the latter is liable to generate hydrochloric acid in the free state at the temperature of the callender rollers and thus tender the fibre Epsom salt is also used for agricultural purposes, as weighting ingredient for sizing yarns It is also used for weighting paper, silk and leather and for fire proofing materials

Sodium Sulphate.—This compound in its anhydrous state is known as salt cake. Glauber's salt contains 10 molecules of water of crystallisation. If Glauber's salt is allowed to remain exposed to the air or more quickly heated, it passes into the anhydrous form, the commercial variety is the decahydrate— $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$. This salt occurs in nature in sea water natural brine and in several deposits in Persia, Spain, Caspian Sea and Siberia. For industrial purposes this salt is prepared at Stassfurt from crude carnallite and also by the decomposition of salt with sulphuric acid. Most of the Glauber's salt manufactured is converted into soda. It is also found as a by-product in the manufacture of nitric acid. The annual output of salt cake is 360,000 tons. Glauber's salt forms large monochinic crystals which melt at 32.4°C and are re-dissolved in the sulphate and water. Forty parts of sodium sulphate dissolve in hundreded parts of water at 30°C . The maximum solubility is 55 parts at 34°C . Glauber's salt is largely used by dyers, both in its crystallised and calcined form. It is used in the finishing of cotton goods and is found in most of the dyestuffs which are sold in the form of powders or pastes in which it is very often added for reducing the strength of the colours. It is used by dyers for purposes of regulating dyeing operations. Glauber's salt is principally used in the manufacture of sodium carbonate, and is also extensilvely used in glass making, especially window and bottle glass.

Potassium Chloride.—This salt occurs in sea water brines and in various natural deposits. It is found in Stassfurt, in Salt-Lake—Uta and at various other places, mainly associated with rock salt or brines. It occurs as seybine— KC1 , as carnallite— $\text{KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}$ as kainite— $\text{MgSO}_4 \cdot \text{K}_2\text{SO}_4 \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}$, as schonite— $\text{MgSO}_4 \cdot \text{K}_2\text{SO}_4 \cdot 6\text{H}_2\text{O}$. These potassium salts are used for the recovery of pure potassium chlorides. Different methods are employed at Stassfurt to recover the pure salt. As potassium chloride and magnesium sulphate are equally soluble in water, the separation of potassium chloride is very difficult. Carnallite is, however, very soluble in hot solution of magnesium chloride. Magnesium sulphate and

sodium chloride, however are sparingly soluble. The process of separation is based on this property of carnallite. In France the separation is effected by cooling the mixture of magnesium sulphate, potassium chloride, magnesium chloride and sodium chloride. Magnesium sulphate and common salt separate out leaving the carnallite in solution.

Carnallite is separated out and treated as under —

- (1) Lixiviation of the carnallite with hot water
- (2) Crystallising the chloride of potassium by artificial freezing
- (3) Evaporating and cooling the mother liquor to produce a second crop
- (4) Treating the second crop as before

Potassium chloride is a white substance crystallising in cubes melting at about 750°C and slightly volatile at high temperatures. 100 parts of water dissolve 32.7 parts at 15°C . Potassium Chloride forms the basis for the preparation of a number of other valuable potassium salts—such as potassium nitrate, carbonate, bromide, chromates and chlorate. By far the most important use of potassium salts is in the preparation of artificial manures.

During the war the supply of potassium salts from Stassfurt was suddenly stopped and various other sources of potash salts were brought to light. Potash salts are now prepared as a by-product in cement, salt and sugar industries.

Magnesium Chloride—Magnesium chloride is present in sea-water and in natural brines. It forms part of carnallite which is found in abundance in the Stassfurt deposits. Magnesium chloride of commerce is principally prepared as a by-product at Stassfurt and sea-salt manufacture. In both cases the mother liquor remaining after the recovery of the potash salts is evaporated at 134°C to specific gravity of 1.34. The hot concentrated liquor is run into casks or drums where it solidifies into a white mass containing about 46 per cent of magnesium chloride. The cost of producing one ton of crystallised chloride of magnesium in Stassfurt before the war, including containers, was 16 shillings per ton (c f preparation).

of magnesium chloride at Kharaghoda) Magnesium chloride is a very soluble and deliquescent substance Its principal technical use is in the preparation of sizing for cotton yarn where it is used on account of its hygroscopic properties to keep the yarn moist, soft and pliable In a dry climate a very large percentage of magnesium chloride is required in sizing In Ahmedabad where the natural humidity in the air is very low, 5 tons of magnesium chloride are, as a general practice required for every 100 looms In Bombay which has a far more humid atmosphere hardly $2\frac{1}{2}$ to 3 tons are required

Calcium Chloride.—Calcium chloride is present in sea water and natural brines In the spontaneous evaporation of the mother liquor it separates out as tachhydrite $\text{Ca Cl}_2 \text{MgCl}_2 \text{12H}_2\text{O}$ There is no extensive application of this salt but as it is a by-product in several important industries, *viz.*, in soda-ash manufacture and potassium chloride and the Welden chlorine process various uses are suggested for its disposal Calcium chloride is a highly hygroscopic substance, which when dissolved in water shows considerable diminution in temperature If a hydrated salt is heated strongly it becomes anhydrous It is placed on the market as a fused solid Its principle uses are as a dehydrating agent, preservative and in fire proofing paints It is also used in freezing mixtures and in the manufacture of ammonium chloride and mineral waters Calcium chloride is sometimes used in sizing, though its use is limited to a very great extent as it cannot be used either with Epsom or Glau-ber's salt During the war when there was a shortage of magnesium chloride in Bombay certain textile mills had used calcium chlorides as a deliquescent substance in sizing Recently calcium chloride has been largely used in cities and towns for spraying over roads in order to keep down the dust

Magnesium Bromide.—Magnesium bromide is found in the mother liquors remaining after the recovery of salt At Stassfurt it is found as brom-carnallite $\text{MgBr}_2 \text{KBr 6H}_2\text{O}$ The quantity occurring in the mother liquor is sufficiently large for its recovery Magnesium bromide as such is of little technical value except as

raw material for bromine. As Magnesium bromide is highly hygroscopic, it is not separated by fractional crystallization but by treatment with chlorine gas bromine is set free. This process is employed in France, Germany and the United States. Chlorine required for this purpose may be generated by any one of the well-known processes. At Stassfurt bromine vapours are passed over wet iron turnings. The resulting bromide of iron serves as raw material for the manufacture of potassium and sodium bromides. Bromine compounds are largely used in medicine, photography, in the extraction of gold, the refining of platinum and in the manufacture of Prussian blue and potassium permanganate. Bromine is now extensively used in the manufacture of dyestuffs. The United States of America produce very large quantities of bromine. The production is mainly from brines and sea water salt works. In America the average yield of bromine is 35 lbs from 700 gallons of bittern having a strength of 40°B.

VII

BRINE SALT WORKS—INDIA

Kharaghoda Salt Works.*

These works are near Kharaghoda—a village in the Viramgam taluka of Amedabad District, Bombay, situated in 23° N and 71°, 50°E on the border of the little Rann of Cutch. Kharaghoda is about 24 miles to the east of the Kuda salt pans. When Ahmedabad passed to the British, the eastern shore of the little Rann contained 5 salt works in the possession of the petty chiefs of Bajana, Patri, Saolas, Dhegam and Jhinjuwada. These were gradually acquired by purchase between 1822 to 1840, and were subsequently closed in 1875 in favour of a single factory at Kharaghoda. These, however, proved unequal to meeting the constantly increasing demand for salt, and in 1881-82 new salt works were opened at Udu, which is six miles north of Kharaghoda and is connected with it by a line of rails.

These works are jointly named the Pritchard Salt Works. They belong to the Government and are worked departmentally. The ground is the property of the Government, and the salt is manufactured on Government account by Agarias who are paid at a fixed rate.

The quality of salt manufactured at these works is known in the Presidency as Vadagra or Baragra salt. Vadagra salt is a cubical crystal from half an-inch to a three-fourth inch in thickness.

* As Nimaknagar will have to supply Baragra salt of the same quality or better than that made at Kharaghoda and as both the works draw their brine from the Rann, a very close study of the Kharaghoda Salt Works was made by personal visits and by examining Agarias in 1920, 1923 and 1924. Only such experienced men were selected as witnesses who had over 35 years working knowledge of Kharaghoda Works. Further information was gathered from Government Officers at Kharaghoda and from the Annual Government Reports.

built of a number of smaller crystals. In colour it ranges from pale brown to pure white. The crystals in some instances are very transparent but yellowish to gray in appearance. The opaque crystals are whiter and grayish in colour. A good quality of Vadagra salt is extremely hard, and for this reason it is very much valued for transport over long distances. The loss in the handling of Vadagra salt is considerably less than in the smaller conical sea salt.

Commencement of Work—Soon after the monsoon about the end of Bhadarva (August-September) if the monsoon is bad, or at the beginning of Ashav if the monsoon is good, information is sent round by the Government to all the surrounding villages where Agarias have their homes, notifying the date on which applications are to be received and the date for the commencement of operations. The Agarias must present themselves on the notified date. The allotments are completed in about a week's time, and thereafter the operations of the season actually commence. Each pan is given under contract made out jointly in the names of three Agarias. It is immaterial whether one or two of them are minors or women. There is no restriction on the number of pans worked by a single family provided there are three persons registered for each pan. As soon as the allotments are made the Agarias have to begin operations within a week, but as a rule they start their work immediately the next day if their financial arrangements are complete. The Agarias have generally no resources of their own, and they have to borrow money from money-lenders at the commencement of the season. The Sowkars or money-lenders advance to the pan holders Rs 45 to Rs 60 per pan to help them to begin work. The rate of interest charged by these money-lenders is very excessive. Usually for sums upto Rs 300 they charge $2\frac{1}{2}$ annas per rupee per month (187 per cent per annum). For sums upto Rs 800 to 1,000 at the rate of annas 3 per rupee per month (225 per cent per annum). This advance is made in the names of the three contracting parties for each pan, and all three of them are jointly held responsible for the loan and interest.

It is very difficult to obtain satisfactory labour at salt works Men who know the work ask from annas 12 to one rupee per day of 10 working hours Food is provided to them by Agarias Unskilled labour is at annas 10 to annas 12 per day Women charge 8 to 10 annas and boys 6 annas It costs the Agaria Rs 10 to 12 per month to feed a labourer

Working Hours.—The Agarias work from 9 to 10 hours a day upto March and only 8 hours in April and May when the days are very hot They generally begin work long before daybreak and work till about 8 They then rest for a couple of hours and then resume work at 10 again leave off work between 1 and 2 The work for the day is finished at 6 p m

Wells—The first operation in which they engage is the digging of wells Three adult workmen take 7 to 8 days to sink a circular well 6 to $7\frac{1}{2}$ feet in diameter to a depth of 18 to 30 feet according to the nature of the soil and until the brine stratum is obtained There are few wells over 7 feet in diameter About 6 feet is quite common Some of the wells are broader at the bottom than at the top The interior of the well is encased (Kantvo) with Baval or Tamarisk boughs to prevent the sides from falling in The “Dhenkva” or the superstructure which is made of boughs and wood resembling a long lever and attached to an upright wooden post and weighted at one end is then erected at the side of the well in order to lift the brine Two levers, for two men to work at a time are provided to each “Dhenkva” Each lever has at the end a rope to which is attached an earthenware pot (ghendu) of about 168-176 ozs capacity These earthenware pots cost at Kharaghoda half an anna per pot The total cost of the superstructure for drawing brine including Dhenkva, Kantvo, Ghendu, complete with ropes and all is between Rs 15 to 20 During the construction of the well and its superstructure besides the contractor two other workmen called “Dandias” are engaged, making in all three workmen The Dandias are paid at the rate of Re 1 per day The Agaria has to pay for his food.

which costs annas 6 extra per head. The total cost of making a well is as follows —

	Rs
1 Agaria Rs 1-8-0 per day for 8 days	12
2 Dandias Rs 1-6 0 " "	22
Kantvo, Dhenkva, Ghendu and other materials	20
Total	54

There is generally one well for each pan, but when the wells are made at great distances, either on account of the weak brine—under 16° B, or the difficulty of obtaining a good current, the wells are located at considerably long distances. In such cases a distance from half to three-fourths of a mile is quite common. When the wells are at a long distance from the condenser, two to three wells are required for supplying sufficient brine to one pan. There are several cases in which 6 wells supply brine to one channel one mile long and connecting to two condensers. Though distant channels help in rapidly concentrating the brine, there is a considerable loss of brine by leakages and absorption. The Agarias state that they have to draw for nearly two to three hours more every day to make up for this loss. The loss by leakages is about 30 per cent. Distant wells are quite common at Kharaghoda, and the Government has to pay a compensation every year for locating the wells at long distances as will be seen from the following figures —

	Rs
1920-21	19,660
1921-22	21,595
1922-23	22 820

The site for wells is changed every third year. For two consecutive years the well gives a good supply, but in the third year it gives very little brine. If another well is dug in close proximity of the old site, in some cases even within 10 feet the supply of the brine is normal.

During the monsoon—floods the wells are filled up with silt, sand and clay, and as there is no protecting wall over the well the well has to be dug out year after year. It makes therefore no difference to the Agarias whether a site for the well is new or old.

Condenser.—On the 9th day after completing the well the men engage in the construction of the condenser or reservoir called by the Agarias “Gamdu”. The well is connected with the condenser by a slough or an earthen channel 9 inches to 12 inches wide and 3 inches deep. The length of the slough depends on the distance of the well from the condenser. It takes three adult workers from 4 to 6 days according to the nature of the soil to complete the reservoir. Each reservoir is 80 ft by 80 ft with a low mud embankment or dike 15 inches to 18 inches high. The ground is first wetted with brine drawn from the well and scraped till a good floor is obtained with a slight slope towards the pan. The dikes are covered from inside with dry twigs or sods on which gypsum, as it separates from the brine deposits. The height of the dike is kept 8 to 10 inches above the level of the brine to allow the play of the waves. The twigs also protect the wash of the waves. After completing the dikes they begin filling the reservoir with brine. It takes three men nearly one full week to fill the reservoir to a depth of 5 to 6 inches. If the well maintains a good supply of brine, two men work continuously in drawing the brine. The third man relieves alternately the other two. A man draws from the well, in which the brine level is 10 feet below the surface, on an average at the rate of 10 pots or about 10 gallons per minute, or 600 gallons per hour by continuous working, but as they generally rest from time to time, the average lift is from about 400 to 500 gallons per hour. For a working day of about 9 hours the average per man is 3,000 gallons. If the brine is continuously drawn for three to fours the well gets completely emptied and the men have to wait for 2 to 3 hours till the brine again collects in the well. The best yield does not exceed 6,000 gallons a day of 10 hours. When the reservoir is newly constructed, a good deal of the first draw of brine (about 8,000 gallons) is lost in saturation of the soil, and it

takes about 6 days to bring up the brine level in the reservoir to 6 inches. At the end of the sixth day the reservoir of 6,400 square feet area and 6 inches of brine contains 20,000 gallons of brine.

The cost of constructing the condenser is as follows —

	Rs	as
1 Agaria for 6 days at Rs 1-8-0 per day	9	0
2 Dandias , , , 1-6-0 , ,	16	8
Twigs	3	0
Brine for saturation	5	0
Spades, bamboos and wood pieces	2	8
		—
Total Rs	36	0

Cost of Brine—Two men if they work continuously will draw 6,000 gallons in a day, but as the work in the sun is very fatiguing a third man is always required to relieve alternately the other two men. As each workman gets Rs 1-6-0 the cost of 6,000 gallons would be Rs 3-12-0 or one anna per 100 gallons containing about 190 lbs of salt. The price of salt would on this basis alone be 5 18 pies per mrd.

The Pans or Crystallisers—On the fifteenth day after the beginning of the operations and after constructing the condenser the pan is laid out parallel to the condenser leaving a distance of 6 feet between the two. Formerly each pan was 250 feet in length and 80 feet in width, but at present the size of the pan is reduced to 250 feet by 70 feet. The pans are placed lengthwise to the direction of the wind in order to promote waves on the surface of the brine. The distance kept between two pans in a row is 50 feet and 100 feet between two opposite rows. A railway siding passes through the 100 feet track. Three men are sufficient for the construction of the pan. The work is generally divided into the following operations —

- (1) Clearing the site and making the clay dikes
- (2) Puddling and tamping
- (3) Levelling
- (4) Hardening and finishing

The surface is first cleaned and weeds removed. After this a low dike about 12 to 15 inches high is built by scraping the dry earth from the floor. The ground is then wetted with brine let in from the condenser through the small feeding channel. As soon as the brine is soaked, all irregularities are noted and a rough levelling is made. This operation takes two days. On the third day the brine is again spread over the pan and allowed to dry during the next two days. While the surface is drying the men are engaged in completing the side embankments or dikes (jibhta). On the sixth day the pan is roughly divided into three parts for the purpose of tamping and puddling. Each part is taken at a time and takes two days for tamping and puddling. The men, keeping their heels at right angles slowly go over the ground in each section six times. The operation in each case takes two days for three men taking in all 6 days to complete this operation. On the 13th day brine is again let in to a depth of one-eighth inch in order to finally adjust the level, leaving an imperceptable slope towards the farther end. After adjusting the level the brine is allowed to dry and once more all the irregularities on the surface are levelled out by the spade. On the 14th day the white crust of salt which is formed is treaded upon so as to embed it into the floor, and once more puddled till no impressions are formed on the soil. The brine is allowed to dry and form the tiny culture crystals. On the 15th day it is once more irrigated to a depth of a quarter inch, the water allowed to dry till a white incrustation of the salt appears on the 16th day. The final process takes two days during which the fine crust of salt is tamped and puddled once again till it is hard, dry and firm. The ground is exposed to the sun for two days more. On the 20th day it is examined for its hardness, and if it is found that it is sufficiently hard and free from cracks, it is considered to be ready for crystallisation. The whole of the constructional work is finished in about 34 days from the commencement of the work for the well.

During the construction of the pan the condenser is constantly emptied and filled again, and this requires the services of 2 to 3

more men In all 6 men are engaged during this period The cost of constructing the pan works out as follows —

	Rs a
Agaria 20 days at Rs 1-8	30 0
5 men „ „ „ „ 1-6	137 8
Implements	4 8
Dry twigs	8 0
	<hr/>
Total	180 0

The total cost of the layout is as follows —

	Rs
2 wells	108
Slough	6
Condenser	36
Pan	180
	<hr/>
Total	330

This is a recurring expense and must be incurred every year Whether the site of the pan is new or old, it must be prepared every year on account of the annual floods which leave a silt layer over 4 inches thick As the total area of the pan is (250 feet by 80 feet) 20,000 square feet and that of the condenser (80 feet by 80 feet) the ratio of the condenser to the pan area is 1 3 Each set of condenser and pan requires $(14+80+6+250+50)=400$ feet by $(25+80+25)=130$, i e, 52,000 square feet, excluding the area occupied by the well and the slough

Season.—The season begins in the third week of August when the allotments are made.

SEASON

Year	Pan filled in				Pan emptied			Work ing days
	First pan	Udu	Kharighoda	Last pan	First pan	Udu	Kharighoda	
1919-20	15th Oct	17th Oct	20th Dec	10th Dec	11th March	10th March	10th May	223
1920-21	20th Sept.	22th Oct.	28th Dec	24th Dec	17th March	25th March	18th May	228
1921-22	24th Oct	25th Oct.	28th Dec	24th Dec	23rd March	7th May	18th May	207
1922-23	11th Oct	18th Oct	18th Oct	15th Oct	23rd Feb	26th Feb	20th Apr	100

It takes a day or two over a month for the preparation of the well, condenser and the pan before the salt crop begins to form. About the third week of September the brine is first taken in and the manufacture continued for seven months. During this period 4 men are required for each pan, three for drawing brine and one for raking and spade work. About the middle of March they stop drawing water at the wells. Five or six days after the whole of the water from the condenser is allowed to drain into the pan, where condensation and crystallisation is allowed to proceed for a month till the mother liquor is on a level with the top of the crystals.

Working of the Pans—The Kharaghoda and Udu wells give brines of varying densities ranging from 11° to 21° B. In only a few of the wells the density is between 20° to 21° B. The average general density of the brine may be taken at 17° B. in the beginning of the season and 18° at the end of the season.

Three men are required to work one well containing plentiful supply of brine but if the supply of brine is deficient in one well and another is required, the same men work the two wells alternately. Wherever the wells are deep bullocks are employed to lift the brine.

Year	No of pans worked by bullocks	Total No of pans	Per cent
1920-21	254	783	32
1921-22	361	845	42
1922-23	402	857	49

The brine, as it is lifted from the well is run through a channel into a condenser where it is allowed to remain for nearly 10 to 12 days in winter and 7 days in spring before it reaches a density of 23-24° B. After the middle of April and in May the evaporation is so rapid that the brine is let in very rapidly from the condenser. A day at times is quite enough. In any case the brine must first settle in the condenser to deposit suspended impurities and calcium sulphate (Khar). While it is in the condenser between 18 and 24° B most of the dissolved calcium sulphate separates out and collects on the dry sods on the sides of the condenser.

Great care is taken to remove gypsum deposited from the condenser. The feeding channel which is placed at the end away from the well, is covered over with dry sods through which the brine gradually passes into the pan. The connection between the pan and the condenser is made very small. A hollow bamboo of three-fourth inch diameter is used as the pipe through which the brine constantly passes from the condenser to the pan. Particular care is taken to feed the brine very slowly. A rapid flow will lower the density of the saturated brine in the pan and thus ruin the crop. During dry cold wintry nights a thick dry film forms on the surface. This scum is removed every morning and not allowed to dissolve in the pan. After the brine has reached a sufficient density, the hole in this pipe is made still smaller by the insertion of one or two twigs. The brine is flooded to a depth of 2 inches in the pan and this level is maintained till the brine reaches about 25 B and the salt crystals begin to appear. For a week the level of the brine is raised every day till the pan contains 4 to 5 inches of brine at the end of the first month. Eight days after the first flooding of the pan, the men first enter the pan and break the crust of salt which varies from half to three-fourth inch. This is done simply by treading upon the salt first and then working the rake both ways along the length and the breadth of the pan until the crust is finely broken and the crystals are separated. The rake or Dantara is 68 inches long, 4 inches in diameter and has 14 teeth, each tooth is 11 inches long, three-fourth inch broad at the end and 4 5 inches distant centre to centre. The handle of the rake is 5 5 inches long and 3 5 inches in diameter. The spade or Pavdi is 2 feet 10 inches in length and 7 inches wide. The handle is 7 feet long and about 3 inches in diameter. The plank of the spade is made of three-fourth inch thickness.

Thereafter the brine is continuously admitted during the 24 hours till the end of the season. Throughout the season the level of the brine is kept about 3 inches above the level of the salt. The salt is raked the first day and spread out by the wooden spade the next day. Thus the raking and the spade work alternate day

after day till the end of the season. The raking takes 6 hours for each pan, but for the spade work it does not take more than an hour and a half. As the season advances the 14 teeth of the rake are reduced to 8, and as the depth of the crystal increases, two men are required to draw the rake instead of one. The raking and spade work are very laborious tasks. One man can attend during the morning only to one pan, in the afternoon he spends his time in helping the other two men in drawing water. Three men are thus required to attend to one pan continuously during the season. This procedure is specially adopted for obtaining Baragra salt crystal from half to three-fourth inch thickness. The raking and spade work separates the mass and loosens the crystals which have a tendency to coalesce. The loosened crystals thus get sufficient room for the growth of the separate crystals. The density of the brine gradually rises to 26°B at which it maintains almost upto the end of the season. When the condenser is finally emptied in the pan the density of the brine is 27 to 28°B, and at the end of the month when the level of the brine reaches the level of the crystal, and the mother liquor is ready to be discharged, the strength of the brine is about 28—29°B. The salt crystal layer attains a thickness of 7 inches at the end of the season.

Harvesting—The Government notifies the date for the closing of the season. From this day the Agarias begin to collect the crop, and pile it into long ridges inside the pan in order to drain out the bittern. They make six ridges in a pan, the distance kept between two ridges being 10 feet. When the ridges are complete, the level of the bittern is 3 5 inches over the floor for every 7 inches of the thickness of the crop. Outside labour is required for making these ridges. Generally a gang of 60 men finish the work in about 5 to 6 hours. Each man is paid for this work at the rate of As 12 to Rs 1-4-0 according to the thickness of the crop. The cost of making the ridges is between Rs 45 to 75 per pan. The Agarias have to make cash payment for this labour. The ridges are allowed to drain for three days. During this time the three Agarias or contractors drain out the brine from the pan and scrape

up the floor with their spades till the floor is practically free from bitterns and a clean surface is exposed. When the ridges have completely drained out the harvest is ready to be lifted. On the 4th or 5th day after the ridges are made, a gang of 300 men is engaged for the day in one pan to gather the salt and to stack it near the rail at one end of the pan. The number of men depends upon the quantity to be lifted. The payment is made at the rate of 5 to 7 annas per man per "Kadam" of 5 feet. There are 50 Kadams in a ridge, and as there are 6 ridges, 300 men are required for lifting. They finish the work in 5 to 6 hours. The salt is carried in baskets by men, women and boys to the end of the pan where it is to be loaded into wagons. Hand trolleys were tried, but the Agarias prefer the baskets. For the trolley work they can only employ men strong enough to drag the trolley. They can however employ women and boys if the salt is removed by baskets. The 300 men are paid at the rate of 5 to 7 annas per Kadam—and the total cost to the Agaria to bring the salt to the rail per pan amounts to from Rs 120—150.

The Agaria's work ends with the stacking of the salt by the side of the rails. He has to keep a watch till the salt is loaded into the wagons. When the heaps are fairly dry, the open wagons are brought alongside the pans and the Agarias are asked to load the wagons. For loading in the wagons they are paid by the Government at the rate of As 14 per wagon load of 180 mds, *i.e.*, about As 2 per ton or a fraction over a pie per maund. From 1923 the average load per wagon is fixed at 150 mds. Each pan requires 30 wagons of 7 tons to take its entire crop to the stack. The weight of the salt for which the Agarias have to be paid is determined by taking the difference in the weights of the loaded wagon and the tare of the wagon. Each rake of empty wagons is weighed over a weigh bridge several times during the storage operation and the weight of the full wagon is also determined. From the net weight thus obtained five per cent is deducted for dryage, shortage in handling, etc. The Agaria is paid for only 95 per cent of the net weight.

As soon as the payment is made to the Agaria, the money-lender immediately takes back his advances with interest. This completes the Agaria's work. Before returning to his village the Agarias leave their rakes, spades and the superstructure of the wells and wooden implements into a pit near their pans and cover them up for use during the next season.

Yield of Salt.

Year	Average yield	Maximum yield
	per pan	per pan
	mds	mds
1919-20	4,823	13,000
1920-21	6,315	13,832
1921-22	4,883	11,920
1922-23	5,283	10,728
<hr/>		
Average	5,326	12,370

As each pan is 250 by 80 feet = 20,000 square feet, the yield per 100 square feet is as follows —

	Per 100 sq ft	Per acre
	mds	mds Tons
Average yield per pan	26 5	11,681 429
Maximum yield per pan	61 8	27,253 1,000

Cost of Production

From the beginning to the end of the season the total expenditure per pan is as follows —

	Rs
Construction of well, condenser and pan	330
Five months labour—	
1 Agaria at Rs 1-8 0	228
2 Dandias at Rs 1-6-0	418
Making ridges	50
Stacking near pan	130
<hr/>	
Add for interest on borrowings	1,156
<hr/>	
Total Rs	1,356

The total wages paid during five months may be apportioned as follows —

	Rs
Brine	400
Raking and spade work	200
General care and supervision	50
	<hr/>
	650

If the Agaria can obtain contractors to draw water they willingly pay for 4 months work (not 5) from Rs 150—200, but it is difficult to get such contractors

Agarias' Earnings.—Of the above sum of Rs 1,156. the Agarias' actual out of pocket expenditure is about Rs 700 for outside labour and implements to this must be added his own expenses for food and hut about Rs 100 *plus* interest about Rs 200, making a total of Rs 1,000. As the rate fixed by the Government is 2 as and 9 ps per md the Agaria will just balance his account if the crop raised is 5,500 mds. If the yield is under this he will be a loser. As a fair outturn is reckoned by the Agaria at 5,500 mds, he hardly makes any profit out of this occupation. The only inducements are that of getting a job in non-agricultural season and the hope of earning a good sum by working for a yield larger than 6,000 mds. He however, still makes a small profit by employing members of his own family (wife and children) and thus makes a saving in wages and interest, but it must be pointed out that as the fixed rate paid by the Government, *viz*, 2 as 9 ps hardly leaves any margin of profit to the Agaria, it must be taken as the actual lowest cost of manufacture

Cost of Salt to Government.—The Government paid in the 1919-20 season at the rate of as 2 per maund and in 1920-21 the rate was increased by 9 ps per maund, *i.e.*, at. 2-9 per maund.

Year	Total crop	Total amount	No of pans	No of agari as	No of agarias per pan	Receipt per head	Amount per pan Rs
1920-21	49,44,762	8,49,762	783	2,3-9	3	362	1,083
1921-22	41,25,771	7,09,113	845	1,976	2	359	839
1922-23	45,27,103	7,78,096	857	1,972	2-3	395	914

Advances by Government—The Government advances per pan about Rs 60 as Tagavi grant in January (Posh) and Rs 30 per pan in March (Fagan) during the collection of salt. These sums are deducted from the sums paid at the end of the season.

Grants to Agarias—The following grants are made every year as necessity arises —

- A Compensation for damage done by untimely rain
- B Working pans at great distances from the wells
- C Assistance to Agarias in heaping salts and clearing pans
- D Bonus for increased output
- E Prizes for good quality of salt
- F Rewards as an inducement for commencing work early
Rs 15, 12 and 9 per pan according to the date notified
- G Reward for preparation of good pans and channels
- H Pugris to Agarias and Patels for giving a good load in wagon in the haulage

The following grants were made under the above headings —

	1920-21	1921-22	1922-23
	Rs	Rs	Rs
A	22,396		
B	19,660	21,595	22,820
C	4,500	5,292	4,422
D	4,026	5,991	5,508
E	400	400	400
F	6,282	4,005	6,165
G	150		

Other Grants—Besides the above advances and grants the Government pays every year for various other purposes

	1920-21	1921-22	1922-23
Provision for quarters	7,800	4,262	4,396
Reconstruction of quarters			4,396
Excess amount for a school house	113		
Repairs to quarters	45	90	135
,, plank road and trolleys		849	
Compensation and Royalties to various States whose rights of manufacture of salt are taken over by the Govern- ment			

Storage—The storage of salt commences in April at any time during the ~~first~~, 2nd or 3rd week according to the early or late commencement of the season or the prevailing winds. The whole of the salt is stacked before the 15th of June. During the 4 years under review the salt was stacked as follows—

	1919-20	1920-21	1921-22	1922-23
Maunds per day	65,300	78,450	82,515	85,400
Number of working days	52	63	63	53

The salt is stacked partly in closed stores and partly in the open. The closed store is a long building, divided into 8 compartments with a clear height of 21 feet for the salt stack. The wagons are led up an incline over the stores. The rails are supported by wooden tressels and masonry pillars. When the wagons are in position the side flaps are opened and the salt dropped into the store. The closed store holds about 440,000 maunds. A continuation of the incline was made during recent years for piling the salt in the open. These open stores are surrounded by a high palisade, the flooring being made of masonry. Each stack in the open is made for 5.8 lakhs of maunds. There are six such stacks, making a total provision for storing in the closed and the open stores for 42 lakhs. By the side of these stores there are other heaps about 60 feet at the base and 30 feet at the apex. The angle of repose being 36°, one cubic foot of salt weighs 62.5 lbs or for storing one ton, 36 c ft are required.

Cost of Storage.

	1919-20	1920-21	1921-22	1922-23.
	Rs	Rs	Rs	Rs.
Cost per lack mds or 3.673 tons	511	612	676	932
	As ps	As ps	As ps	As ps
Cost per ton	2 3	2 5	2 11	3 11

Loss and Wastage.—Considerable quantity of salt is lost or wasted by handling and in storage. The losses are mainly due to:—

- (1) In open stacks carried away by wind and cyclone
- (2) Rain dissolves and washes out a considerable quantity

- (3) Rain and moisture in the air remove a good quantity of magnesium chloride and along with it some salt, and moisture from the wet salt
- (4) Differences in actual weighment and quantity determined by measurements of the stack
- (5) Inaccuracy in weights on weighing the wagons on the weigh-bridge

In the closed stores the annual loss and wastage is generally shown at 3 5 per cent as against a loss of 10 5 per cent in the open stores. It must be noted that the total loss in storage is not entirely borne by the Government. It was pointed out that the Agaria is given a short weight—5 per cent less than the net weight in order to make up for drainage and handling.

Production of Baragra Salt—The total yearly production of Baragra salt at Kharaghoda is given in the following table which also shows the total quantity of sea salt produced in this Presidency.

PRODUCTION OF SALT IN THE BOMBAY PRESIDENCY

	Baragra Salt Mds	Sea Salt Mds	Total Mds
1919-20	33,95,925	91,09,129	125,05,054
1920-21	49,44,762	90,72,481	140,17,243
1921-22	41,25,756	79,19,990	120,45,746
1922-23	45,27,110	110,06,631	155,33,741

Packing and Forwarding—During the storage of salt, particularly in the open store, the salt crystals on the surface and far inside harden very firmly. The surfaces exposed to air are so hard that they cannot be broken by pickaxes. In some cases they have to blow the sides with powder. In the closed stores the stacks keep better and no such trouble is experienced. Loose salt is then removed by manual labour, bags filled, weighed and loaded into wagon. The weights of the filled bags are kept uniform. Each bag holds 3 maunds and is legibly marked with consecutive numbers.

Sales.—Sales are effected by indents received from traders. The charge payable is fixed by the Government. This sale price is made up of,—

- (1) Cost price fixed by the Government under Section 8 of Indian Salt Act, 1882, which includes cost price paid to Agaria plus Ground Rent at nine pies per maund and haulage charges, also nine pies per maund. The haulage charge includes the loading of salt into wagons at pan, haulage and stacking charges
- (2) Digging, bagging, weighing and sewing charges, three pies per maund
- (3) Duty, Rs 2-8-0 per maund.
- (4) Cost of bags, nine annas a bag of three maunds. This charge is not compulsory, the trader may supply his own bags

On payment of these charges the permits are issued for despatch. The freight is payable by the trader. The bags are despatched in closed wagons. Baragra salt is sold through agencies at which a uniform charge is made. This charge is made up of (1) the selling price at Kharaghoda plus (2) a certain rate for haulage to the Agencies. The Agents receive one per cent on the sales and are allowed one per cent on the amount of salt issued to them on account of wastage. The sale price is made up as follows—

Selling Price at Kharaghoda.

	Per maund
	Rs a. p
Cost price	0 2 9
Ground rent	0 0 9
Haulage charges	0 0 9
Digging, weighing, sewing, etc	0 0 3
	<hr/>
Duty	0 4 6
	<hr/>
Total	2 12 6

The selling price at Agencies —

	Rs a p
Selling price at Kharaghoda	2 12 6
Haulage, 4 to 6 pies	0 0 6
	<hr/>
	2 13 0
Plus Agency commission and shortage	0 0 6
	<hr/>
Total	2 13 6

The extra charge of six pies on account of commission and haulage is intended to meet the cost of distribution. But this figure does not in any way represent the actual net cost price as will be shown later on.

SALES OF BARAGRA SALT

	Quantity Mds	Sale proceeds Rs	Rate per md As p
1919-20	26,81,185	8,41,303	5 0
1920-21	34,70,972	16,43,081	7 7
1921-22	24,26,138	4,06,896	2 8
1922-23	19,04,905	6,43,048	5 3

The average sale price during the last four years is 5 as 1½ pies.

Administration Charges—To determine the actual net cost price for at the stores, the overhead or administration charges must be added to the cost price of salt. In the annual reports the percentage charge shown on gross receipts (which include the duty) is shown from year to year as under —

	Rs a p
1916-17	13 3 6
1917-18	15 0 0
1918-19	15 9 2
1919-20	18 7 8
1920-21	16 13 2
1921-22	33 8 8
1922-23	44 6 0

As these figures give no indication of the actual cost of administration per maund, the following tables have been prepared from the annual reports to determine the required figure as near as it is possible to do so

Net Expenditure of the Salt Department.—In the Government annual report the total expenditure given for salt is inclusive of the expenditure debitible to excise. The net expenditure debitible to salt is made up of (A) “net nine-tenths debitible to salt” as shown in the report plus (B) amount paid for salt purchase and freight and (C) expenditure of the Chief Account Office

	A	B	C	D
	Rs	Rs	Rs	Rs.
1919-20	21,81,521	6,81,527	37,259	22,18,780
1920-21	24,33,951	6,91,018	45,364	24,79,315
1921-22	24,20,431	10,70,543	60,550	24,80,981
1922-23	23,54,380	10,17,719	59,296	24,13,676

From the above table the net cost of the administration of the salt department is obtained by adding the figures of A & C columns as given in column D. The amounts in column A include all items of expenditure of which the following are the main heads —

	Per cent
Pay including supervising establishment	65
House rent, travelling expenses, etc	10
Special allowances (including Kharaghoda)	5
Contingencies and miscellaneous	20

Cost of Administration per Maund—This is worked out from the total salt produced and the total expenditure given in column D of the preceding table

Year.	Total Production. Mds.	Total Expenditure. Rs	Per Maund As ps
1919-20	12,505,054	22,18,780	2 11
1920-21	14,017,243	24,79,315	2 10
1921-22	12,045,746	24,80,981	3 4
1922-23	15,533,741	24,13,676	2 6

The average cost of administration is thus 2 annas 11 pies per maund

Net Cost Price of Salt

	Per Maund As ps
Cost price paid to Agaria	2 9
Loading wagons at pans, haulage to stores and stacking	0 9
Digging, filling, weighing, sewing and loading into wagons (price of bags not included)	0 3
Ground rent	0 9
	—
	4 6
<i>Add</i> overhead administration charges	2 11
	—
Total cost price	7 5

It seems from the annual reports that the Government is accepting tenders at five annas per maund whereas it actually costs them seven annas and five pies. It must be noted that 7 as 5 ps is again not the proper commercial cost price. To this must be added depreciation of railway trucks, renewals, repairs and interest on Capital invested in Buildings and Stores about Rs 30 lakhs and also interest on Capital locked up for Reserve Stocks and on yearly wastage and shortage of salt in storage.

Markets for Baragara Salt—Baragara salt has not been able to stand in competition with sea salts in places south of Baroda. Between Mahi and Narbada rivers, both the salts are sold but north of Mahi it is the only salt consumed by the people in the British territory and partly in Kathiawar. Beyond the Presidency it enters into competition with the salts of Rajputana, Central India, North-West Provinces and United Provinces, as far as Hathras, Faizabad, Benares and Chotta Udaipur.

Distribution of Baragara Salt.

	Per cent
Bombay Presidency	31
Central Provinces	27
North Western Provinces	20
Central India, Rajputana Malwa	22

Manufacture of Magnesium Chloride at Kharaghoda—Till 1915 the mother liquor or bittern, locally known as 'res' was wasted. During the war Indian imports of magnesium chloride from Germany having stopped, attention was drawn to the possibility of making use of the bitterns at Kharaghoda as a possible source of magnesium chloride. A small experimental factory was put up in 1915 in Ahmedabad for the recovery of magnesium chloride from the bitterns which were sent in tanks from Kharaghoda. A company was formed in the name of the Pioneer Magnesia Works. The Company acquired on lease 20,000 sq yards from the Government for the purposes of factory buildings, workmen's quarters and the drum plant. After the pans are emptied, the bitterns are allowed to further concentrate in the fields by solar evaporation till they reach a density of over 34 to 35°B. Before the bitterns reach this density various other salts are precipitated along with residual salt left in solution after the bulk is gathered in the pan. The bitterns of over 32°B are then collected at the pans by means of a motor rail wagon with a special tank attachment.

The plant consists of settling tanks, vertical boiler, feed pump, suction and several copper pans, all except the tank are located in one building.

Settling Tank.—The bitterns from the salt works were first brought in drums of 4 gallons capacity and emptied into a tank 15'×15'×6'. The new tank was built in 1917 lined with Shahabad limestone. This tank is 40'×40'×6' and is designed to receive 56,000 gallons of bitterns. The bittern is allowed to settle for some time till all suspended impurities settle down. When it has settled to a fairly clearly liquid it is syphoned over into another tank 10'×5'×3' deep for further settling. These two tanks are in the

open. From the second pan the clear brine is pumped into the tank inside the factory. This tank has a well of 2' diameter in which is lowered a suction pipe which feeds the copper pans.

Process—There are 10 kettles made of copper sheets. Each is 3' deep, 3' in diameter and of $\frac{1}{4}$ " plate. The kettles are mounted in 2 rows on a furnace fired by flue gases. Either wood or coal is used as fuel. The copper kettles were first mounted on an old type of brickwork in which there was a considerable loss of heat. The design was subsequently altered with a view to lower the cost of fuel. The bittern is pumped in these kettles and boiled to 135° C till a precipitate is obtained. When the mass develops a turbid appearance, the contents of the kettle are ladled out into a settling tank outside the building and allowed to remain there at 120° C. Magnesium chloride remains liquid at this temperature. This tank is 60' \times 30'. During the process Epsom Salt $MgSO_4 \cdot 7 H_2O$ loses water and forms kieserite $MgSO_4 \cdot H_2O$ which is insoluble in a solution of magnesium chloride. This magnesium sulphate and also some salt separates out at the bottom and the supernatent liquid, while still hot, is poured into sheet iron drums, each holding 5 cwt of fused magnesium chloride. The chloride on cooling solidifies to a hard grayish mass. The hard sludge which is removed from the settling tank is not made use of, but is treated as waste. Two tons of bitterns are said to give on an average 1 ton of magnesium chloride. The daily production is about 10 tons. Forty workmen are required at this factory. The working hours are from sunrise to sunset—about 11 hours. During the monsoon the factory stops working for 4 months.

The magnesium chloride made at this factory compares well with the German quality in chemical analysis, but there is one drawback, *viz.*, colour. This factory's product is of a grayish colour. No method has yet been found for removing this colour. The colour of the crystal is pure white, but on fusion the gray colour invariably returns. The Company has tried to solve this difficulty, but it has not so far succeeded in putting on the market a perfectly

white magnesium chloride similar in appearance to the German article, which is once more in the market at very low prices

During the first year of the factory the Government charged a royalty of annas 8 per cwt, later on this was increased to Rs 1/8 per cwt. On the Company's representation this was again revised, in January 1923, and a sliding scale fixed on a profit sharing bases with retrospective effect from 27th February 1922.

PRODUCTION—The production of the factory is shown in the following table, which also shows the imports and their value—

IMPORTS & INDIAN PRODUCTION OF MAGNESIUM CHLORIDE

Year	Imports		Sales of Kharaghoda Production Tons
	Tons	Value Rs	
1914-15	2,705	3,00,570	
1915-16	3,563	9,33,075	
1916-17	1,067	2,81,355	838
1917-18	1,185	2,90,955	1,181
1918-19	Not available		1,970
1919-20	848	2,27,397	1,647
1920-21	2,929	8,39,210	1,171
1921-22	2,330	4,49,680	1,099
1922, April to July, 4 months	1,510	1,89,746	600
1922-23			638

NOTE—Import figures for the years preceding 1914-15 are not available

The labour at this works averaged about 100 men. Upto July 1922 the Government has received over 2½ lakhs under royalty

Closing of the Factory.—The factory has unfortunately been obliged to close down owing to the severe competition with foreign (principally German) imported magnesium chloride. Before the war German quality was sold between Rs 3 and 4 per cwt. At

the present time (December 1923) the prices of imported material are as under —

C.i.f quotation £3 per ton, 46 per cent solid fused white made in Stassfurt and packed in 5 to 6 cwts strong iron drums

This c.i.f quotation is made up as follows —

£	s	d
1	2	0 for freight
0	6	0 insurance, shipping & landing charges
0	12	0 Agents commission and factory to port expenses
<hr/>		
2	0	0

Bombay quotation Rs 3-8 per cwt This leaves to the manufacturer £1 per ton for the material including packing in 6 cwt drums When competition was very keen and the German stuff was dumped on the market, the lowest quotation was Rs 1-8 per cwt The Pioneer Company is not in a position to make any profit by sales under Rs 4-8 per cwt The chief drawbacks are —

- (1) Cost of the drums The Company's drums are made of thicker sheets than those used for Stassfurt chloride
- (2) Railway freight from Kathiawar to Ahmedabad and Bombay
- (3) Royalty payable to Government
- (4) Heavy cost of manufacture owing to open pan boiling and heavy replacement of copper pans which require constant renewal One pan lasts hardly a year

Refined Salt—By the side of the magnesium chloride factory, the Company built in 1921 a refinery for the production of refined salt Baragara salt is first dissolved, and then after a preliminary treatment for the removal of magnesium and other impurities, it is concentrated in shallow open pans which are fired from underneath The refined salt is fairly good in quality and stands in competition with the best imported table salt, its production during the last two years was in 1921-22 1,333 maunds, and 1922-23 4,523 maunds

Water Supply.—Considerable difficulties were experienced in supplying fresh water for the town and the Agarias till a boring was made in August 1915. There is a large tank which used to supply water for all the general purposes, but the tank very often became dry during the years of scanty rain. The artisan well is of 8 inches bore and draws water from about 317 feet below the surface. The water comes out continuously without pumping at the rate of 6,000 gallons per minute when the valve is fully open, but as so much water is not required the valve is partially closed to give about 360 gallons per minute. Even this quantity is far in excess of the requirements and over two-thirds of it runs to waste in fields and ponds. The pumped up water overflows in a small shallow tank to the south-west where it is used for washing and for watering. This water is also largely used by the cattle of the neighbouring villages. From the bore hole earthenware pipes are laid out all over the salt works, and the Agarias have to pay a charge of Re 1 per pan for the season of seven months.

Welfare Institutions.—Besides the Administration offices the Government maintains a school, a dispensary, a library and an hospital. They have also a club for the officers. A suggestion was made in 1920 for a Co-operative Credit Society for the betterment of the Agarias by reducing their perpetual heavy indebtedness, but, as was naturally expected, the formation of a Co-operative Society amongst the Agarias was not found feasible, and the reasons given were the great illiteracy, unwillingness to contribute in the share of the initial capital required for the starting of a society, mutual distrust, and the consequent hesitation to stand security for each other. It was decided, however, to start a society among the Government servants and thus gradually familiarise the Agarias of the advantages of a co-operative society.

Population.—The population in Kharaghoda varies between 3,000 to 3,500. Considering this number it will be interesting to note that the number of patients treated annually at the dispensary is over 5,000 of which one-fifth is for malaria.

**Chemical Composition of Brines, Bitterns and Salts
Kharaghoda Brine.**

	Per cent
Sodium Chloride	14 67
Magnesium Chloride	4 63
Magnesium Sulphate	0 48
Calcium Sulphate	0 44
Potassium Chloride	0 41
Calcium Carbonate	0 01
Magnesium Bromide	0 07

There are several other reports and records of analysis of Kharaghoda brines, bitterns and salts, but the best and most reliable information on this subject is contained in Sir James Dobbies' Report I am obliged to Mr R D Bell, Director of Industries, Bombay Government, for his courtesy in giving me the necessary permission to make use of this very interesting and useful report which I am giving below in extenso

SCIENTIFIC & INDUSTRIAL RESEARCH DEPARTMENT.

16 AND 18, OLD QUEEN'S STREET,
WESTMINSTER, S W 1

27th October 1920

SIR,

I am directed to refer to your letter (R and S 3609/1918) of April 8th, 1919, and to subsequent correspondence, and to inform you that the Government Chemist has forwarded to this Department a copy of his report upon the examination of samples of brines, salts and bitters from the Government Kharaghoda Salt Works, Rann of Cutch, India

Perusal of Sir James Dobbie's report indicates that the samples of brines and bitters collected in accordance with his directions, contain such quantities of potassium and bromine compounds as warrant careful consideration of the possibility of extracting these valuable by-products on a technical scale. Thus the five brine samples contained, on an average, 4.9 grms and 0.85 grms per litre of potassium chloride and magnesium bromide respectively, the three samples of bitters showed an average content of 3.77 grms of potassium chloride and 8.2 grms of magnesium bromide per litre. The Kharaghoda district from which, it is understood, 100,000 tons of common salt are obtained annually, represents but a very small proportion of the whole area of the Rann of Cutch, further, portion of which may be found on survey to yield considerable quantities of salt. The figures given above, considered in the light of the present (and relatively small) output of salt and of the potentially great future output, appear to indicate that the valuable by-products potassium chloride and magnesium bromide are obtainable in very considerable quantities in the Rann of Cutch. It is further to be noted that the brines and bitters from Kharaghoda yield considerable quantities of magnesium chloride, a substance possessing important industrial uses. A careful chemical survey of the District may possibly yield evidence of the presence of other commercially valuable materials in workable quantities.

In reference to the chemical potentialities of the Kharaghoda and neighbouring districts, the following extract from the Report of the Chemical Service Committee (Simla 1920) page 60, is of interest —

“ It is no less urgent in order to provide adequate data for the bureau of information, that steps should be taken in the immediate future to commence a chemical survey of non-forest lands. For example, little or nothing is known of the vast salt deposits at Kharaghoda, and one of the first duties of the Director of Research appointed to the Bombay Presidency should be to erect a sub-station in this district and to subject the area to thorough investigation by a staff of skilled chemists in order to determine its industrial importance ”

The evidence reviewed above suggests that the supplies of the raw materials mentioned are on such a scale as to warrant the expectation that their development will be found desirable. In these circumstances, I am directed to suggest that you may wish to consider whether, pending such action as may be taken upon the Report of the Chemical Service Committee, tests upon a scale larger than a laboratory operation (“semi-large scale”) should immediately be put in hand in order that more exact information may be available when it is found possible to proceed further with the question

I am, etc.,
F G OGILVIE

The Secretary,
Revenue and Statistics Department,
India Office, St James's Park, S W 1

GOVERNMENT LABORATORY, CLEMENT'S INN PASSAGE, STRAND

LONDON W C 2
September 28th, 1920

SIR,

Ref No Revenue R & S 2587-19 and R & S 3172-19

With reference to your two letters of May 1919, the samples of brine, salts and liquors from the bitterns were received in April

last and have been examined as desired. The results of the experiments are given in the enclosed report, from which it will be seen that there is good ground for believing that the brines may form important sources of potash as well as bromine.

The subject is deserving of fuller investigation and the services of this Laboratory are at your disposal in the matter.

I am, Sir,
Your obedient servant,
J. CONNOR

The Under Secretary of State for India,
Revenue Department, India Office, S W 1

*Report of the analysis of brines, samples of bitters and salts
from the Rann of Cutch*

The samples which were received on April 14th, 1920, consisted of six brines marked 1 to 6, Lab Nos Misc 28, 30, 32, 34, 36 and 38

Four bitters marked 7 to 10 Lab Nos Misc 40, 43, 44 and 47

Six salts (sodium chloride) marked 1a, 2a, 3a, 4a, 5a, and 6a, Lab Nos Misc 29, 31, 33, 35, 37 and 39

Four salts (magnesium chloride) marked 7a, 7b, 9a and 9b, Lab Nos Misc 41, 42, 45 and 46

One "crystals" marked 11, Lab Nos Misc 48

One "sludge" marked 12, Lab Nos Misc 49

Samples Nos 32 (brine 3) and 47 (bitters 10) were broken in transit to the Laboratory and the contents lost although some crystals remained in No 47. These were scraped out of the bottle and weighed 6 ozs. On analysis they proved to be magnesium chloride contaminated with small amount of magnesium sulphate, sodium and potassium chlorides and contained bromine amounting to 0.37 per cent.

Samples Nos 43 and 44 (bitters Nos 8 & 9) had deposited crystals probably during the journey to this country. In each case they were filtered off, drained at the pump, weighed and analysed. The crystals from bitters Nos 8 weighed 8.0 ozs and proved to

be magnesium chloride very similar in composition to those scraped from the broken bottle from which bitters Nos (10) had been lost, but containing a slightly greater amount of bromine namely 0.47 per cent

The crystals from bitters (No 9) weighed 1¹ ozs and were totally different in character. They were crude carnallite (*i.e.*, magnesium potassium chloride, $MgCl_2, KC1, 6H_2O$) containing 20 per cent of potassium chloride and, except that they contained less magnesium sulphate, were very similar to sample No 18 (crystals II) which formed in the side of the bitters storage tank to which reference is again made below (see tables 7 and 8)

Sludge No 12 was filtered and drained as far as possible at the pump

The solid portion weighed 17 ozs but still contained adhering liquid. It is substantially a mixture of one part of crystallised magnesium chloride and three parts of kieserite (*i.e.*, magnesium sulphate of composition $MgSO_4, H_2O$) and is slightly alkaline owing to the presence of magnesium hydroxide. It contains 0.14 per cent of bromine and small amounts of sodium and potassium chlorides. The liquid portion weighed 5 ozs and had a specific gravity of 1.344 and except that it contains less bromine (0.47 per cent) it is similar in composition to bitters No 8

The following table shows the results of the analysis of the samples which arrived intact —

Table I.

RESULTS OF THE ANALYSIS OF KURUVADODE BURNS

Mark	1		2		3		4		5		6	
	Lab. No. ^a	28	30		34		36		38		39	
			Per cent by wt	Grams per litre								
Calcium (Ca)	0.10	1.13	0.11	1.14	0.15	1.77	0.14	1.62	0.19	2.17	0.19	2.17
Magnesium (Mg)	0.77	8.73	2.61	31.84	1.31	15.49	0.83	9.58	0.91	10.75	0.91	10.75
Sodium (Na)	5.17	58.63	5.73	69.89	6.52	77.02	6.08	70.22	5.36	61.32	5.36	61.32
Potassium (K)	0.15	1.70	0.11	5.00	0.18	2.13	2.19	2.19	0.15	1.72	0.15	1.72
Iron												
Chlorine (Cl)	9.67	109.66	16.37	199.68	14.07	166.21	11.75	145.58	11.09	126.87	11.09	126.87
Bromine (Br)	0.01	0.14	0.13	1.56	0.05	0.60	0.05	0.53	0.04	0.46	0.04	0.46
Sulphate (SO ₄)	1.18	13.38	0.92	11.22	0.38	1.49	0.59	6.81	0.42	4.80	0.42	4.80
Carbonate (CO ₃)	0.01	0.11	0.01	0.12	0.01	0.12	trace	0.03	0.01	0.11	0.01	0.11
Total solids	17.09	193.78	26.29	320.65	22.67	267.82	19.63	226.56	18.19	208.20	18.19	208.20
Water by difference	82.91		73.71	77.1	77.1	80.37	80.37				81.81	81.81
Sp. Gr. at 40° F.	1.131		1.220	1.181	1.181	1.154	1.154				1.144	1.144

Table II.

The results shown in Table I for brines may be explained as follows —

Mark.	1		2		4		5		6	
	Per cent by wt	Grms per litre								
Calcium Carbonate (CaCO_3)	0.01	0.11	0.02	0.24	0.01	0.12	0.01	0.11	0.01	0.11
Calcium Sulphate (CaSO_4)	0.33	3.74	0.33	4.03	0.48	5.67	0.46	5.31	0.60	6.86
Magnesium Carbonate (MgCO_3)	1.19	13.50	0.85	10.37	0.05	0.59	0.34	3.92		
Magnesium Sulphate (MgSO_4)	2.05	23.25	0.48	11.64	5.06	59.77	2.94	33.92	3.65	41.76
Magnesium Chloride (MgCl_2)	0.05	0.57	0.15	1.83	0.06	0.71	0.05	0.58	0.05	0.57
Magnesium Bromide (MgBr_2)	13.15	149.13	11.52	177.11	16.58	195.76	15.45	178.28	13.64	156.04
Sodium Chloride (NaCl)	0.20	3.29	0.78	9.51	0.35	4.13	0.30	4.15	0.29	3.32
Potassium Chloride (KCl)										
Total solids	17.07	193.69	26.13	318.73	22.59	266.75	19.01	226.27	18.24	208.66
Sp gr at 60°F		1.134		1.220		1.181		1.154		1.144

Table III.
RESULTS OF THE ANALYSIS OF BITTERS—7, 8 AND 9

Mark	7		8		9	
	Lab No.	Visc	40	43	44	Grms per litre
	Per cent by wt	Grms per litre	Per cent by wt	Grms per litre	Per cent by wt	Grms per litre
Calcium (Ca)					0.06	0.78
Magnesium (Mg)	8.09	106.57	8.96	120.76	7.73	101.21
Sodium (Na)	0.32	4.22	0.19	2.56	0.50	6.55
Potassium (K)	0.07	0.92	0.05	0.67	0.33	4.32
Iron (Fe)					0.02	0.02
Chlorine (Cl)	21.68	285.50	25.11	233.43	21.61	282.94
Bromine (Br)	0.48	6.26	0.76	10.26	0.36	4.74
Sulphate (SO ₄)	2.40	31.61	0.78	10.51	2.09	27.38
Carbonate (CO ₃)	0.04	0.53	Traces	Traces	0.04	0.52
Water by difference	33.08	435.70	35.87	483.45	32.72	428.42
Sp. Gr. at 60°F	06.92	1.317	04.23	1.348	67.28	1.300

Table IV.

The results shown in table 3 may be expressed as follows—

Calcium Carbonate (CaCO ₃)				0.06	0.79
Calcium Sulphate (CaSO ₄)				0.13	1.70
Magnesium Carbonate (MgCO ₃)	0.06	0.70	Traces	Traces	
Magnesium Sulphate (MgSO ₄)	3.01	39.05	0.98	13.21	2.51
Magnesium Chloride (MgCl ₂)	28.36	373.59	33.27	448.41	27.56
Magnesium Bromide (MgBr)	0.55	7.24	0.88	11.86	0.42
Sodium Chloride (NaCl)	0.82	10.80	0.48	6.47	1.28
Iron Chloride (Fe ₂ Cl ₆)			0.06	0.81	16.76
Potassium Chloride (KCl)	0.13	1.71	0.10	1.35	0.63
Total solids	32.03	433.78	35.77	482.11	32.59
Sp. Gr. at 60°F	1.317		1.348		1.300

Table V.

RESULTS OF THE ANALYSIS OF MAGNESIUM CHLORIDE SAMPLES Nos 7a, 7b, 9a and 9b

Mark	%			
	7a	7b	9a	9b
Lab No.	41	42	43	46
Calcium (Ca)	%	%	%	%
Magnesium (Mg)	11.76	11.96	11.79	12.59
Sodium (Na)	0.30	0.31	0.25	0.23
Potassium (K)	0.45	0.13	0.54	0.57
Chlorine (Cl)	34.35	34.65	34.04	36.62
Bromine (Br)	0.67	0.56	0.63	0.54
Sulphate (SO ₄)	0.29	0.12	0.19	0.16
Carbonate (CO ₃)	0.02	0.01	0.01	0.02
Insoluble Residue	0.05	0.04	0.02	0.04
Water	52.14	52.93	52.79	49.73
Total	100.03	100.71	100.26	100.52

Table VI.

These results may be combined as follows —

Mark	7a	7b	9a	9b
Lab Nos Misc	41	42	45	46
	%	%	%	%
Magnesium Carbonate ($MgCO_3$)	0.03	0.01	0.01	0.01
Magnesium Sulphate ($MgSO_4$)	0.36	0.15	0.24	0.22
Magnesium Chloride ($MgCl_2$)	44.97	45.71	44.54	48.00
Magnesium Bromide ($MgBr_2$)	0.77	0.64	0.72	0.63
Sodium Chloride ($NaCl$)	0.75	0.80	0.63	0.50
Potassium Chloride (KCl)	0.86	0.25	1.03	1.00
Insoluble Residue	0.05	0.04	0.02	0.04
Water	52.14	52.03	52.70	49.73
Total	99.93	100.53	99.98	100.34

Table VII

RESULTS OF THE ANALYSIS OF SALTS 1a, 2a, 3a, 4a, 5a, 6a

Mark	1a	2a	3a	4a	5a	6a
Lab Nos Misc	29	31	33	35	37	39
Calcium (Ca)	0.56	0.32	0.71	0.30	0.35	0.57
Magnesium (Mg)	0.25	0.24	0.43	0.11	0.31	0.23
Sodium (Na)	36.20	37.19	35.67	37.78	36.87	36.80
Potassium (K)	0.05	0.03	0.08	0.01	0.03	0.04
Chlorine (Cl)	56.55	57.96	56.08	58.01	57.06	57.42
Bromine (Br)	0.02	0.02	0.02	0.01	0.02	0.02
Sulphate (SO_4)	1.66	0.68	1.92	0.90	0.97	1.33
Carbonate (CO_3)	0.02	0.01	0.03	0.02	0.02	0.02
Insoluble Residue	0.07	0.05	0.07	0.10	0.13	0.15
Water	3.98	3.08	5.13	1.70	3.48	2.98
Total	99.46	99.74	100.14	99.99	99.86	99.56

Table VIII.

These results may be combined as follows —

Mark	1a	2a	3a	4a	5a	6a
Lab Nos Misc	29	31	33	35	37	39
Calcium Carbonate ($CaCO_3$)	0.04	0.02	0.05	0.04	0.03	0.03
Calcium Sulphate ($CaSO_4$)	1.86	1.06	2.35	1.28	1.16	1.90
Magnesium Sulphate ($MgSO_4$)	0.44	0.14	0.33		0.20	
Magnesium Chloride ($MgCl_2$)	0.63	0.82	1.40	0.44	1.06	0.87
Magnesium Bromide ($MgBr_2$)	0.02	0.02	0.02	0.01	0.02	0.02
Sodium Chloride ($NaCl$)	92.33	94.52	90.64	96.05	93.69	93.54
Potassium Chloride (KCl)	0.10	0.05	0.15	0.02	0.10	0.07
Insoluble Residue	0.07	0.05	0.07	0.16	0.13	0.15
Water	3.98	3.06	5.13	1.70	3.49	2.98
Total	99.47	99.74	100.14	99.70	99.86	99.58

Table IX
RESULTS OF THE ANALYSIS OF CRYSTALS

Mark.	11	Crystals from Bittern No 9
Lab Nos Misc	48	
	Per cent	Per cent
Calcium (Ca)	0 08	0 06
Magnesium (Mg)	7 95	7 91
Sodium (Na)	3 66	3 65
Potassium (K)	10 52	10 51
Chlorine (Cl)	33 12	37 73
Bromine (Br)	0 17	0 17
Sulphate (SO ₄)	7 32	0 49
Carbonate (CO ₃)	0 03	0 02
Insoluble residue	0 43	0 20
Water	37 16	39 37
Total	100 44	100 11

Table X.

These results may be combined as follows :—

	Per cent.	Per cent.
Calcium Carbonate (CaCO ₃)	0 06	0 03
Calcium Sulphate (CaSO ₄)	0 20	0 16
Magnesium Sulphate (MgSO ₄)	9 00	0 48
Magnesium Chloride (MgCl ₂)	23 93	30 51
Magnesium Bromide (MgBr ₂)	0 19	0 19
Sodium Chloride (NaCl)	9 29	9 26
Potassium Chloride (KCl)	20 06	20 04
Insoluble residue	0 43	0 20
Water	37 16	39 37
Total	100 32	100 24

Before considering the interpretations of the results of the analysis it is desirable to indicate the methods of analysis adopted especially as those adopted for potassium, bromine and water, are of the greatest importance. A full description of these will be found in the appendix of this report.

The calcium, magnesium, potassium, bromine, sulphate, carbonate, insoluble residue and water were determined directly, but in the case of the brines and bitters the water was taken by difference. The chlorine was obtained from the total silver halide after deducting the amount due to the bromine which was determined directly. The mixed alkali chlorides were weighed together and the sodium chloride was obtained by deducting from that weight the amount of potassium chloride found by direct determination as perchlorate after precipitation by sodium cobaltinitrite. As a check, in some cases, the mixed alkali chlorides were converted to perchlorates and the potassium perchlorate weighed.

In the case of the brines and bitters the results are expressed as per cent by weight and in grams per litre whilst the salts are expressed as per cent by weight only. In all cases the table of determined radicles is given first, following by a table showing how, in our opinion, these radicles may be considered to be combined in the samples. It will be observed that the individual totals in these two tables do not exactly correspond in all cases. This slight discrepancy is due to the inevitable small errors of analysis and to the fact that in combining the various radicles there is always a slight excess of one of them, usually magnesium, at the end. As in our experience the estimation of magnesium usually tends towards results that are a little high, the figure for magnesium chloride given in the table is calculated from the excess of chlorine after all other radicles have been accounted for. In any case it must be emphasized that the difference observed is small and of no importance in considering the results of the investigation.

Consideration of the Results of the Analysis

1 THE BRINES AND BITTERS TABLES 1, 2, 3 AND 4

All the samples contain bromine and potassium chloride, but in

variable amounts Of the brines No 30 (Mark 2) is the richest in bromine, and in potassium and magnesium salts The amount of potassium chloride present namely 9.5 grams per litre is comparable with that found in the Dead Sea water having a specific gravity of 1.16 (Surface water)

Bitterns Nos 40 and 44 (Marks 7 and 9) contain respectively 0.48 and 0.36 per cent of bromine, while No 43 (Mark 8) as might be expected contains the greatest amount namely 0.76 per cent All the bitterns contain large amounts of magnesium chlorides, but the amount of potassium chloride is not so great as might have been anticipated if the potassium chloride has remained in solution. This is due to the fact that, since the bitterns have densities varying from 1.31 to 1.35, they are practically saturated solutions, and the bulk of the potassium chloride has been previously precipitated as crude carnallite The compositions of the crystals No 48 (Mark 11) which form on the sides of the bitterns pan bears out this explanation The crystals are in fact crude carnallite

Since the presence of potassium chloride in the brine is of the greatest importance, but was not found in the samples analysed by Mr Mackenzie Wallis, it is desirable at this point to state that experiments have been conducted on the limited amount of brine No 30 (Mark 2) at our disposal with the object of finding out the limits of the specific gravity for the complete precipitation of the potash as carnallite On concentrating the brine at about 40°C with a stiff breeze blowing over the surface of the evaporating liquid most of the salt (sodium chloride) is precipitated when the hot liquor attains a specific gravity of 1.26 This precipitated salt contained 0.35 per cent of potassium chloride After removing the sodium chloride, the mother liquor on being concentrated at about 50°C till the specific gravity of the hot liquor reached 1.31, deposited crude carnallite which contained 10.5 per cent of potassium chloride Owing to lack of material we were not able to fix the precise limits of the specific gravity for the production of carnallite containing 20 per cent of potassium chloride (this being the proportion found in the crystals (Mark 11)

but it is probable that such a carnallite would be produced if the precipitation took place between the specific gravities of 1.28—1.31. It would however be a comparatively simple matter to fix the condition necessary in India for the precipitation of carnallite by trial upon an experimental scale in the works.

That potassium chloride of a fair degree of purity can be readily obtained from the carnallite produced in India has been proved by the recrystallisation of sample No. 48 (Mark 11). The crystals of crude carnallite from even the sides of the bitters pan contain 20 per cent of potassium chloride and after a simple process of recrystallisation yield a crude potassium chloride of 70 per cent purity, a small sample of which in a bottle is forwarded with this report.

The question of the production of bromine from the bitters will be taken up after the analysis of the salts have been considered.

The brines and bitters contain no iodine and only spectroscopic traces of lithium in certain cases. We have examined the bitters (so far as the material at our disposal allows) for the presence of rubidium and caesium but with negative results.

2 THE SALTS (SODIUM CHLORIDE) TABLES 7 AND 8

The sodium chloride in the salt varies from 90 to 96 per cent, the salt produced from brine No. 34 (Mark 4) contains the highest amount of sodium chloride and the least impurity. All the samples contain very small quantities of bromine and potassium chloride.

3 THE SAMPLES OF MAGNESIUM CHLORIDE TABLES 5 AND 6

The samples contain total solid impurities ranging from 1.89 per cent in No. 42 (Mark 7b) to 2.82 per cent in No. 41 (Mark 7a). No. 46 (Mark 9b) contains the greatest amount of magnesium chloride but this is due to the fact that this sample is the driest. All the samples contain small quantities of potassium chloride and definite amount of bromine. All the samples may be considered good commercial magnesium chloride (fully hydrates).

Production of Bromine—Bittern No. 43 (Mark 8) contains 0.76 per cent by weight of bromine, and bitters Nos. 40 and 44 (Marks 7 and 9) 0.48 and 0.36 per cent respectively. The

amount of bromine in the Stassfurt mother liquors (one of the main world's supplies of bromine) after the removal of the carnallite is usually 0.2 to 0.3 per cent and the amount found by experiment in the mother liquor from brine No. 30 (Mark 2) after the removal of the carnallite was 0.40 per cent. The amount of bromine present in the bitters is thus excluding No. 43 (Mark 8) which is the final mother liquor after the removal of magnesium chloride greater than in the corresponding bitters obtained at Stassfurt.

It should be noticed however that every salt removed from the brines or bitters during the manufacture of salt and magnesium chloride contains bromine in greater or less amount. The sodium chlorides contain on the average 0.017 per cent of bromine, the carnallite 0.17 per cent, the magnesium chloride 0.60 per cent and the solid part of the sludge 0.14 per cent. Every process therefore involving the removal of solid matter from the brines and bitters by crystallisation or precipitation causes a loss of bromine in the liquid which is small in the original brines, but increasing in amount as the mother liquor becomes more concentrated. Consequently it is not possible, knowing only the amount of bromine in the original brine and the degree of concentration to deduce the amount of bromine in the final mother liquor, nor conversely, having analysed only the final mother liquor and knowing the degree of concentration is it possible to deduce the amount of bromine in the original bitters or brine (See Bulletin No. 2, p. 9, Department of Industries, Bombay Presidency.)

For the purpose of obtaining some idea of the order of the total loss of bromine and the amount lost at each stage of the successive operations a definite quantity of brine 30 (Mark 2) was evaporated. From 500 ccs of this brine (specific gravity 1.22) containing 0.128 per cent of bromine 85 grams of salt (sodium chloride) were obtained containing 0.05 per cent of bromine. From the mother liquor which measured 230 ccs and had a specific gravity of 1.26, 30 grms of crude carnallite were obtained containing 0.156 per cent of bromine. The mother liquor at this stage (mea-

suring 125 ccs) had a specific gravity of 1.31 and contained 0.403 per cent of bromine 105 ccs of this mother liquor were concentrated to 32 ccs of specific gravity 1.36 and in the process 62 grams of magnesium chloride containing 0.404 per cent of bromine was removed. This final mother liquor contained 0.674 per cent of bromine. From these figures it can be calculated that 55 per cent of the bromine originally present in the brine has been removed by the various salts taken out on concentration and that therefore most of the loss of bromine occurs during the removal of magnesium chloride when the liquor is most concentrated. Further it will be observed that starting with a brine containing 0.128 per cent of bromine and concentrating more than 13 times, the bromine contents of the final mother liquor is only 0.674 per cent. In other words the bromine has been concentrated only little more than 5 times, and starting with a bittern containing 0.403 per cent of bromine and concentrating more than 3 times, the bromine contents has only increased 68 per cent. It will be observed that the ratio of the bromine contents of bitterns Nos 43 and 40 (Mark 9 and 8) is 100:159 or nearly the same as that found by the above experiment namely 100:168. It is further to be noted that in order to obtain a final mother liquor containing 1.0 per cent of bromine the original bittern must contain 0.60 per cent of bromine whereas the amount present in the richer of the two samples submitted to us was only 0.48 per cent. These figures should not be taken as absolute values since the conditions of crystallisations may differ in India from those in this country and further the loss of bromine on a manufacturing scale may be different from that obtaining in the Laboratory, but they serve to indicate the order of magnitude of the loss of bromine that may be expected, without taking into account any possible loss of bromine that may occur through heating the bitterns to a high temperature, or any loss due to leakage from the pans.

Although there is this great loss of bromine during the various process of manufacture it does not follow that bromine cannot be economically manufactured in India. Apart from the question of

cost of manufacture available labour, and method of manufacture, the determining factor would appear to be the quantity of bittern available. For every 15,000 gallons of bitterns containing 0.50 per cent of bromine, rather more than 900 lbs of bromine are theoretically recoverable, but it would be more satisfactory to ascertain the amount actually recoverable by experiment of a semi-works scale.

Summary and Conclusions.

- 1 The brines and bitterns contain potassium salts, magnesium salts and bromine but do not contain iodine
- 2 Crude carnallite crystallises round the sides of the bitterns pans and may be obtained by allowing the bitterns to concentrate between certain limits of specific gravity
3. Crude potassium chloride may be obtained by a simple process from the carnallite
4. Loss of bromine occurs at all stages in the concentration of the brines and bitterns, but this loss does not necessarily make the economic recovery of the bromine impossible. The factors of most importance are the percentage of bromine in the final mother liquors and the quantity of such mother liquors available
5. It is necessary to modify the report of Mr Mackenzie Wallis in one most important particular, namely the statement (See Mr. Mackenzie Wallis's report conclusion 6 and the second paragraph on page 4 of the Bulletin No 2 of the Department of Industries, Bombay Presidency) as to the entire absence of potassium in the brine. The notable quantities of potassium chloride found in the brines examined in this Laboratory indicate that these may prove to be a useful source of raw material for the manufacture in India of pure potash salts and crude potash salts for fertilising purposes
6. In our opinion it is desirable to make experiments on a works or semi-works scale to decide whether either potash salts or bromine or both can be manufactured economically in India

Methods of Analysis most suitable for Brines and Salts

Estimation of Bromine—No method which depends on the selective oxidation of bromides in the presence of such chloride and the subsequent removal of the liberated bromine by steam distillation is entirely satisfactory, neither is the method of direct titration against chlorine water except within narrow limits for pure dilute solutions of bromides. Further, calorimetric methods are generally only approximate and cannot be relied on where exact results are required.

The only recent method of analysis which in our experience gives satisfactory results is that of Baughman and Skinner (J. of Industrial and Engineering Chemistry, Oct 1919, p 954). The method depends on the liberation of bromine from bromides by chromic acid in concentrated solution in the cold and the removal of the liberated bromine by a rapid current of air. The bromine is caught in a neutral solution of potassium iodide and the liberated iodine is titrated against a standard solution of sodium thiosulphate in the usual way.

The process is carried as follows —

Into a drying cylinder of about 150 ccs capacity fitted with a ground-in stopper carry an inlet tube terminating on the outside in a small funnel and an outlet tube bent at right angles is placed a definite quantity of the bittern or brine (concentrated if necessary). A solution of 15 grams of chromic acid in about 12 ccs of water is then run in through the funnel taking care that the total volume of liquid in the cylinder does not exceed 25 ccs. The cylinder is previously attached to two similar cylinders (without funnels) filled to about one-half of their capacity with a dilute solution of sodium sulphite made slightly alkaline with sodium carbonate. A gentle current of air is drawn through the apparatus until the contents of the reaction cylinder are thoroughly mixed. The forward end of the apparatus is then closed with a screw clip and by gentle aspiration the internal pressure is slightly reduced, after which the back end

of the apparatus is closed by a screw clip. The whole is then allowed to remain closed for 15 to 18 hours.

The next morning the bromine is removed by passing a rapid current of air for three hours, and four 2 ccs portion of 3 per cent hydrogen peroxide at half hour intervals are added to the reaction cylinder. The contents of the absorption cylinder are then transferred to a dish and then evaporated nearly to dryness. In the cleaned out reaction cylinder are placed 15 grams of chromic acid. The absorption cylinders are cleaned and filled to about half their capacity with a neutral solution of potassium iodide (5 per cent) and the three cylinders are connected up. The evaporated solutions and the washings of the evaporation dish are transferred to the reaction cylinder taking care as before to keep the bulk down to about 25 ccs. Aspirate as before for one and a half hours and titrate the liberated iodine with thiosulphate.

Estimation of Potassium.—(See Analyst 1916, p 165) A solution of sodium cobaltinitrite is prepared as follows—

50 grams of cobaltinitrite and 300 grams of sodium nitrate are dissolved in water, acidified with 25 ccs of glacial acetic acid and diluted to one litre. Allow the solution to stand for 48 hours and filter before use.

10 grams of brine are diluted to 40-50 ccs with distilled as water, (put water in a beaker and 30 ccs of sodium cobaltinitrite solution added.) Stir and allow the precipitate to settle for 2 hours (In the case of the salts, where very small amounts of potash are present allow to stand overnight) Filter at the pump in Gooch crucible fitted with a paper disc and wash with water containing sodium cobaltinitrite. Return the crucible and its contents to the beaker and dissolve in the steam or water bath in a few ccs of hydrochloric acid diluted with an equal volume of water. Filter into a small evaporating basin, wash well and take down to dryness. Dissolve the residue in a few ccs of water, filter again if necessary and add a slight excess of perchloric acid. Evaporate on the hot plate until nearly dry. Cool, dissolve in a little water, add 2½ ccs of perchloric acid and again evaporate until nearly dry. When cold

add 25 ccs of 98 per cent alcohol, stir, filter through a Gooch crucible with asbestos mat, wash with 98 per cent alcohol containing 0.2 per cent of perchloric acid and saturated with potassium perchloride. Dry at 100°C, weigh, and deduct the amount of potassium perchlorate found in the volume of perchloric acid used, generally about 1 milligram for every 3 ccs and from the weight of potassium perchlorate thus found calculate the percentage of potassium.

Estimation of Water—In the case of the salts (sodium chloride) where the amount of the calcium magnesium salts does not exceed 3 to 4 per cent no very serious error is introduced into the analysis if the finely powdered salt is dried at 200°C to constant weight and the resulting loss of weight is considered to be wholly water. But in the case of carnallite or magnesium salts and particularly of magnesium chloride, the salt cannot be freed from water at a temperature below that at which the salt is decomposed with loss of chlorine as well. In order to avoid error from this case the following method of determination of water in such salts has been in operation in this Laboratory for some time.

The method depends upon the fact that lead chromate at a red heat will absorb chlorine and sulphuric acid but will not absorb water. Hence if the vapours obtained by heating the salts in question be passed over heated lead chromate in a tube, only the water will pass on into the absorption tube containing pieces of pumice saturated with sulphuric acid. As an additional precaution against traces of hydrochloric acid passing into the absorption tube a spiral of silver gauze is placed in the tube immediately in front of the absorption tube. The mode of procedure is as follows—

A piece of glass combustion tubing 18" long and $\frac{3}{4}$ " diameter is cleaned and dried. The middle third of the tube is filled with granulated fused lead chromate kept in position by two short spirals of copper gauze. In the end of the tube nearest the absorption tube containing sulphuric acid is placed a 4" spiral of silver gauze. The

tube and its contents are first dried by heating to redness in a Fletcher furnace and a current of air dried by passing through sulphuric acid is passed through the tube until all the traces of water are removed. The empty third of the tube is then allowed to cool. About half a gram of the salt is weighed into a boat and placed immediately in the empty cold part of the tube. The salt must be weighed out as rapidly as possible and preferably by enclosing the boat in a weighing tube of "pig" form, this is particularly desirable with magnesium chlorides. A current of dry air is drawn through the tube and the front part of the tube with boat heated gently at first and finally to bright redness and maintained at that temperature for 10 to 15 minutes. Care should of course be taken not to heat the lead chromate to the point of fusion. The absorption tube is finally weighed, the increase in weight being water.

A J F.

GOVERNMENT LABORATORY, }
September 28th, 1920 }

Kuda Salt Works—These works, as was shown in the earlier part of this report, are of very ancient origin. Long before Kharaghoda salt works were opened, salt was manufactured at Kuda. It is stated that the Agarias of Kuda who had inherited the knowledge of salt manufacture from their ancestors were the first to be called at Kharaghoda when the new works were opened in 1822, and that the practice followed at Kuda from ancient times was copied at Kharaghoda in every detail. There is however at the present day absolutely no difference in the practice followed at these two neighbouring salt works. The season is the same as at Kharaghoda. Two kinds of salt are manufactured at Kuda—

- (1) Vadagra (Baragra) or large crystals
- (2) Ghasia or small crystals

Ghasia salt crystals are very light, not being allowed to grow as in the case of Baragra salt, but removed as soon as they are formed like flakes. For this reason they do not require continued labour in raking and spade work as in the case of Baragra salt. For a number of years the contractors were paid Rs 1-9-0 per 100 maunds of Ghasia salt. Before the light railway was brought to the Kuda salt works, the cartage was Rs 4-8-0 per 100 maunds from the site to the old warehouse. Contracts for Baragra salt were given at 8 pies per Bengal maund or Rs 1-2-8 per ton. In November 1920 a general survey of the wells made for the 1920-21 season was made and it was found that the brine level in the wells was 8 feet from the surface. The density of the brine in all the wells was 19 to 20° B at 25° C. In one well brine was at a depth of 4 feet from the surface. Its density was 20° B. In the pans which were just beginning to form salt, a density of 25° B was noted. In the pans where salt was already found, the density was 26° B and in the pans which were being emptied the bittern had a density of 30° B.

During the 1919-20 and 1920-21 seasons, Magnesium Chloride was recovered from the bitterns. At Kuda the bitterns of 30° B were first led into small tanks, where they were allowed to concentrate till about 36° B. They were then transferred by buckets into shallow kettles heated by open fire underneath. They were boiled at 116° C. The method followed at Kuda was very crude, but as the price of imported Magnesium Chloride was very high, it paid the manufacturer to recover Magnesium Chloride from the bitterns, even though the cost of manufacture was very high. Analyses of Kuda brines are given in the following tables. These analyses show that the Kuda brine is stronger than Kharaghoda brine. It should also be noticed that Sodium Chloride in Kharaghoda and Kuda brines of 20° B is less than in "sea water" brine of the same strength.

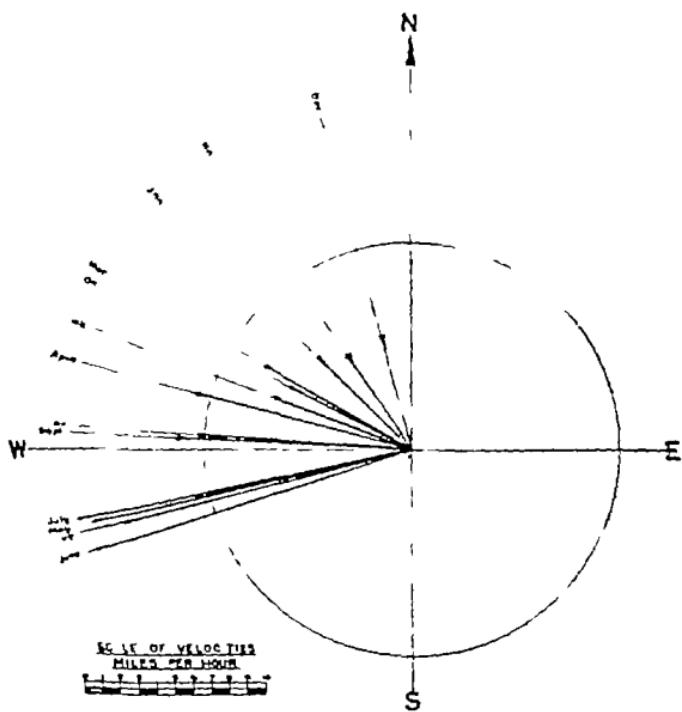

Results of the Analysis of Kuda Brines

TABLE II

	Per cent by weight						Grams per liter											
	A	B	C	D	E	F	G	H	A	B	C	D	E	F	G	H		
Calcium Carbonate (CaCO_3)	0.02	0.02	0.04	0.01	0.02	0.01	0.01	0.01	0.17	0.20	0.42	0.15	0.20	0.12	0.13	0.10		
Calcium Sulphate (CaSO_4)	0.28	0.35	0.23	0.30	0.27	0.54	0.34	0.34	3.23	4.08	2.73	3.54	3.23	6.37	6.42	1.93		
Sodium Chloride (NaCl)	16.00	15.87	17.38	16.90	18.30	17.57	17.64	13.07	17.630	18.590	20.400	10.40	21.680	20.870	21.100	15.870		
Magnesium sulphate (MgSO_4)	0.57	0.47	0.54	0.60	0.43	0.12	0.48	0.28	0.63	5.40	0.30	5.83	5.04	3.76	5.77	3.20		
Potassium Chloride (KCl)	0.22	0.25	0.24	0.22	0.22	0.22	0.21	0.14	3.03	2.92	2.77	2.50	2.60	2.50	2.48	1.60		
Magnesium Chloride (MgCl_2)	4.84	4.69	3.95	4.06	4.21	5.30	5.10	5.43	50.30	54.00	40.31	47.71	40.83	61.03	61.00	62.83		
Magnesium Bromide (MgBr_2)	0.13	0.06	0.03	0.03	0.04	0.04	0.04	0.05	1.31	0.67	0.32	0.37	0.43	0.43	0.50	0.53		
Total solids	21.22	21.71	22.41	22.02	23.49	24.00	24.02	19.02	246.89	251.22	262.05	258.00	277.93	280.00	297.30	230.11		
Specific Gravity at 10°C	1.143	1.171	1.171	1.174	1.183	1.188	1.100	1.168	1.104	1.171	1.171	1.174	1.183	1.183	1.106	1.159		

Highness, and the town and the works were named Nimaknagar (Nimak = salt and Nagar = town, Saltville) This site is about a mile north to south and a mile east to west The southern half which is slightly on a higher level is laid out for residential purposes, and in the northern half the salt works proper will be laid out The natural contours of the selected site have been most ideal giving a drop of 2 feet from south to north and 2 feet from west to east The natural gradient thus helps considerably in the economical layout of the works A brine channel runs in the centre of the works This channel is carried to the southern side where it discharges the brine into a forebay The channel is carried from the works into the Rann of Cutch on a embankment which is of a higher level than the high flood mark On the two sides of the channel there are brine wells The distance between each well is 60 feet These wells will be worked by one central compressor plant, and the brine will be pumped by air-lift from each well into the main channel The brine will be led from the forebay into the condenser, which has a total area equal to forty-five per cent of the total area of the pans The condenser is divided into three sections, the brine flowing by gravity in a zig-zag way from one condenser to the other In the third condenser there are two sluice valves, from which the brine would be led into the pans The pans will be 210×70 feet The area of three pans will make an acre The brine will be admitted to each set of the pan through a pipe, and its flow will be regulated by valves At the end of the pan there will be a take off from which the bittern will flow into the bittern channel The bittern would be run off by gravity All the pans would thus be connected at one side with the brine channel and on the other with the bittern channel The bitterns will flow from all the pans by gravity into one main channel which will discharge it into the bittern reservoir The design of the layout thus makes it possible to take off the bittern without handling The whole of the layout is so arranged, that there will be a constant flow of bittern from one part or the other of the layout, thus making it possible to recover the by-products continuously throughout the

flat country with the exception of a few hills. Round about Dhrangadhra there are several observatories of the Meteorological Department, whose records extend over 50 years. From the records

YEARLY VARIATION IN DIRECTION AND
VELOCITIES OF WIND AT KUDA

FIG 12

of these observatories it would be possible to obtain very nearly a correct idea of the conditions in the Dhrangadhra State. For this purpose I have given the readings of the following stations —

Veraval which is on the sea coast, Rajkot which is in the interior of Kathiawar, Bhuj which is to the south-west of the Rann of Cutch, Ahmedabad which is about 70 miles from Dhrangadhra, and Deesa which is on the north of Dhrangadhra.

At Kuda the weather would resemble more like Rajkot, Bhuj or Ahmedabad with this difference, that in the month of March and April when the north-west winds are blowing from the Rann, the maximum temperature at Kuda would be more than at Ahmedabad.

Table II.
MINIMUM TEMPERATURE

Stations	January	February	March	April	May	June	July	August	September	October	November	December	Year	
													1918	
Veraval	58.8	60.7	64.9	72.5	78.4	81.0	79.2	77.7	76.3	72.3	67.7	62.0	71.0	
Rajkot	51.1	54.5	62.4	69.4	75.1	77.6	75.8	74.5	72.4	68.1	69.3	62.9	66.1	
Bhuj	54.4	58.1	65.4	71.5	76.7	79.8	78.1	76.2	74.6	70.9	62.7	56.1	68.7	
Ahmedabad	57.0	60.3	67.8	75.2	79.5	80.7	78.2	77.1	76.2	72.1	65.7	60.1	70.8	
Deesa	51.5	55.1	63.8	71.7	77.5	80.6	77.6	75.6	73.9	66.8	67.7	62.7	67.0	
Kund* (Nimaknagar)	54.4	58.1	65.4	71.5	76.7	79.8	78.1	76.2	74.6	70.6	62.7	56.1	68.7	

*Expected

Table IV.

WIND

(Mean velocity in miles per hour)

Table VI.
RAINY DAYS

Stations	January	February	March	April	May	June	July	August	September	October	November	December	Normal No of rainy days of year		
													1		
Ahmedabad	0.1	0.3	0	0.1	0.5	4.8	13.5	10.9	5.8	0.8	0.3	0.1	37.2	2	
Deesa	0.4	0.5	0.3	0.3	0.8	4.3	13.0	11.6	5.4	0.8	0.3	0.4	38.7	3	
Rajkot	0.2	0.3	0	0	0	5.3	11.2	0.6	5.1	0.9	0.5	0.2	10.9	4	
Veraval	0	0.1	0	0	0	0.1	4.6	10.9	8.1	4.6	0.1	0.3	0.4	29.2	5
Bhuj	0.1	0.3	0.1	0	0.3	2.4	6.2	3.7	2.0	0.5	0.3	0.2	16.1	6	

Kuda (Nimaknagar) same as Rajkot

Table VIII
RELATIVE HUMIDITY

Station	Year										
	January	February	March	April	May	June	July	August	September	October	November
Rajkot	39.1	38.0	40.3	41.1	51.1	61.6	74.0	74.6	74.5	53.8	38.0
Bhuj	48.1	45.0	47.3	49.1	50.1	63.6	74.0	72.6	69.5	43.8	19.0
Deesa	36.0	29.5	25.9	26.1	30.8	53.9	71.1	75.9	68.1	45.6	36.6

Kuda same as Deesa

"During the past few years the quality of Sambhar salt is said to have depreciated, and it has been suspected that the large quantities which have been removed have at last made an impression on the great stores of salt which must have accumulated in the lake silt, appreciably raising the proportion of the associated compounds sodium sulphate, sodium carbonate and potassium sulphate"

Sambhar lake water contain mostly Sodium Chloride, Sodium Sulphate and Sodium Carbonate in the following proportions —

	Per cent
Sodium Chloride	88
„ Sulphate	7 5
„ Carbonate	4 5

Sodium Sulphate and Sodium Carbonate are present in very large quantities. These are found on the sides of the Lake in layers from 1 to 2 inches deep. Salt is recovered from the brine by solar evaporation in shallow pans or Kyars or obtained by gradual concentration of the waters of the lake itself. Salt forms at Sambhar lake in large crystals of the hopper or pyramid shape. The crystals are white or gray to pink. The manufacture of salt at the lake, it will be seen, depends upon the rainfall which varies from year to year, and the outturn of salt fluctuates in accordance with the quantity of brine in the lake.

Production of Salt.

Year	Maunds
1917-18	45,34,747
1918-19	1,11,90,738
1919-20	44,77,199
1920-21	64,35,535
1921-22	50,18,104

The average rainfall at Sambhar is 20 17 inches. The monsoon begins in June and lasts to the end of October. The cost of salt at Sambhar is extremely low as will be seen from the following table —

Manufacture of pan salt was considered troublesome, precarious and uneconomical. Considerable improvements have been made since 1920, for the production of an assured quantity of salt from surface and subsoil brines. As a result of enquiries made by the Government, it was suggested to construct a large reservoir provided with powerful pumping plant at a cost of rupees four lakhs. This reservoir is to be built by the construction of a dam 12,000 feet long and sufficiently high to maintain a level of 5 feet of water for the cold and hot weather. These measures will safeguard the Sambhar source against scanty rainfall. Other projects at Sambhar are the electrification of the power plant, acceleration in the methods of extraction and in the handling and transport of salt.

Pachbadra and Didwana Brine Salt Works—After Sambhar, the Pachbadra salt sources are next in importance. Pachbadra is on the banks of Luni (salt river) at a distance of 40 miles from the city of Jodhpur. All over the area brine springs exist. Pits of an average length of 230 ft by 60 ft are dug to the level of the brine springs and become filled to a depth of 3 feet. The density of the brine varies from 20 to 25° B. Another important salt centre is Didwana, also situate in Jodhpur at a distance of 40 miles S W of Sambhar Lake. The supply of brine is abundant and believed to be inexhaustable. The cost of production at Didwana is extremely low—As 10 a ton—perhaps the cheapest salt made in the world.

considerable distances in Northern India, these salts are not marketable in Central and Southern India

Prices of Salt in Rajputana and Northern India—The cost price includes the cost of manufacture and storage, cost of supervision, share of cost of hospital establishment, medicine, etc Interest on capital expenditure and outlay, rent of sources, including royalty and other items of expenditure From the prices given below it will be realised that salt is obtainable at perhaps the cheapest rate in the world

PRICES OF SALT IN RAJPUTANA AND NORTHERN INDIA—PER MAUND

	1917-18						1918-19						1919-20						1920-21						1921-22					
	Cost			Sale			Cost			Sale			Cost			Sale			Cost			Sale			Cost			Sale		
	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P	As	P
Gambhir	4	6	31	4	0		1	1	21	4	0		4	2	53	4	0		2	11	0	4	0		3	8	12	4	0	
Dhikwan	1	5	81	2	0		2	8	07	2	0		1	1	14	2	0		2	3	01	2	0	09	1	4	80	2	0	12
Puchbadra	1	11	64	1	6		3	0	20	1	6		3	5	77	1	0		2	3	83	1	0		3	0	07	3	3	08
Average Brine Salt	4	1	68	3	10	72	1	3	80	2	7	87	3	10	11	3	0		2	10	27	3	6	21	3	4	34	3	10	02
Khowra	1	4	20	1	0		1	8	82	1	0		2	3	64	2	11		1	3	32	2	0	03	1	10	63	3	2	63
Nurpur	0	11	22	1	0		0	11	18	1	0		1	2	05	1	11	20	1	4	01	2	1	47	2	5	83	3	2	09
Warcha	0	11	60	1	0		0	8	77	1	0		5	7	02	4	4	35	2	1	09	2	1	29	1	10	5	3	03	
Kalabagh	1	4	60	1	0		1	8	44	1	0		2	8	67	1	11	08	2	2	13	2	3	45	2	1	57	3	07	
Average Rock Salt	1	3	78	1	0		1	0	09	1	0		2	4	05	2	10	04	2	0	10	2	6	22	2	7	42	3	186	

Percentage of quantity imported from different countries

	1918-19	1920-21	1921-22	1922-23
United Kingdom	8 88	14 58	12 7	14 41
Port Said	49 90	19 34	18 14	15 82
Spain	4 13	11 93	11 44	10 55
Massovah	11 30	9 10	9 46	11 24
Aden	25 25	28 65	31 92	30 82
Bombay	0 44	2 80	3 88	5 23
Madras	0 90	0 09	3 81	3 81
Hamburg		12 77	8 63	8 05

Wastage of Salt—The following figures show the average percentages of wastage of salt in the Bengal Warehouses —

	1921-22	1922-23
Liverpool	3 22	2 04
Port Said	0 08	1 00
Aden	0 93	6 03
Massovah	0 05	0 64
Hamburg		0 843
General average	2 65	2 25

The average wholesale price per maund was as follows —

	Rs
1920-21	3-2-4
1921-22	3-3-0
1922-23	3-6-6

For wholesale F O B prices see Appendix

Madras Presidency—Salt is manufactured by solar evaporation of sea water all along the coast of the Madras Presidency. The salt district of the Presidency is divided into three sections. The Northern Section is from Ganjam to Kistna districts, the Central Section is from Kistna to Chingleput districts, and the Southern Section is from Chingleput district all along the east coast, round the Cape and along the west coast upto Udupi district in Malabar. There are in all 48 centres divided into 65 factories spread over a total length of 1,600 miles of sea coast. The 65 factories

or about the middle of February, when strong southerly dry wind, often from the landward side, blows without a break and continues till the second week of June. As a rule three condensers are provided for each crystallising bed. The area thus covered by the condenser is three times the area covered by the crystallising bed. In many cases single irrigation system is employed and in others salt is gathered for a few days. In the single irrigation system, brine is taken in into the crystallising beds to a depth of $1\frac{1}{2}$ to 3 inches, and this is gradually evaporated till a density of 28 to 30° B is reached. The crystals of salt are scraped by flat wooden scrapers. The salt thus obtained is allowed to drain in a heap on the platform adjoining the pan. The irrigation of beds and scraping is repeated every third or fourth day according to the weather. After the fifth, scraping the mother liquor which gets charged with magnesium salts is taken out, the bed again puddled and fresh brine taken in. The bittern is drained off into a special small channel which is constructed on a lower level. The crystals thus obtained are hard and greyish. They crush well, and if well washed in brine give fine white salt. The yield is estimated at 1,000 maunds per acre, or roughly about 35 to 36 tons. As regards labour, two men are required per acre to attend to the crystallising pans and the condenser. Women are employed for all purposes except scraping. The wages paid to men are from Rs. 9 to 10 per month. Women get Rs. 7 per month. For five acres 5 men and 7 women are required. The Government gives sections of the factory to different contractors on lease. The contractor supplies all the materials necessary, such as slung baskets, scrapers, etc. He finds his own labour and conducts all the operations from the beginning to the end except the control of crystallising in the pans. Government inspectors are responsible for the examination of brine from time to time. The whole outturn is purchased by the Government at the fixed rate of Rs. 15 to 20 per "grace" or 120 maunds, or at the rate of As. 2 per maund. At this rate the contractor is expected to make a good profit, estimated at about six pies per maund. The Government in turn sells salt at the site to wholesale dealers at the rate of As. 3 per maund *plus* the duty.

Sea salt manufacture in the Bombay Presidency.—About two-thirds of the salt produced in the Bombay Presidency is obtained from sea water. All along the coast from Dharasna, near Surat, to Sanikatta in the south of Bombay, on about 300 miles of sea coast, salt is manufactured during the dry season from sea water. The season commences in October–November if the monsoon is prolonged. The sea water is let into the reservoir towards the close of the month in which the operations commence. The area is first swept clean of rain water which accumulates in the monsoon. The condensers and the pans are repaired and rebuilt, puddled and tamped till a hard and water-tight floor is obtained. The crystallising pans are first charged with brines in November and December near Bombay. In other salt works, brine is let into the pans in January, and in some cases as late as February. It takes about three weeks for the sea water to condense in the beginning of the season. The actual manufacturing season lasts from four to five and a half months. An acre of land holds 40 pans as will be seen from the following table. A pan contains 1,080 square feet. An acre contains 43,560 square feet ($50' \text{ long} + 4' \text{ ridge} \times 15' \text{ broad} + 5' \text{ ridge} = 54 \times 20 = 1,080 \text{ square feet}$). Each pan yields on an average 70 to 80 maunds. On this basis the monthly outturn per pan can be taken at 12 maunds. The outturn of salt per acre is 18 tons or 108 tons per season of six months. If in the above area an allowance is made for condensers, 10 pans only can be laid out in one acre. The produce per season in that case would be 30 tons. The manufacturing season is reckoned from December to May. In Bombay—Dadar salt works, Kuppa salt begins to form in December and continues till the middle of June. Formerly it was the practice to lay out larger pans and consequently salt did not form till the end of February, but the present practice is to have smaller pans in order to get salt formed earlier in the season than before. The daily wage is As 11 to 12 per labourer. When the agar is laid out and the pans are made water-tight to receive brine, a staff of about 56 men, inclusive of the manufacturer-in-chief is required to attend to 100 acres of land. 50 out of the 56 men have

SALT

where there is a deposit of salt Saran is in Diplo Taluka, Thar Parkar in the Rann of Cutch The cost of transport from Maurypur is 2 as 9 pies per maund

The issue price of salt is calculated as under—

	Rs	a	p
Excise duty	1	4	0
Manufacturing charges	0	1	9
Establishment charges	0	1	5
Conveyance charges	0	2	3
Bagging charge	0	0	6
Storage charges	0	0	5
Railway freight to Sakkar	0	5	9
			—
Total Rs	2	0	1

The Government purchases salt at the three works at the following rates —

	per maund	
	As	P
Maurypur	2	2
Darwari	0	5
Saran	0	9

The loss in transit is from 0 75 to 1 5 per cent from Works to Karanji The losses in storage are from 0 65 to 4 46 per cent The following table shows the production at the above three centres —

	1917-18	1918-19	1919-20
Maurypur Salt Works	Mds	Mds	Mds
Darwari (Dilyar) Salt Works	6,22,272	8,59,728	6,93,682
Saran Salt Works	3,03,625	5,07,600	1,200
	23,706	57,534	32,000
Total	9,49,603	14,24,862	7,26,882

SALT

The factories are well laid out in very large quantities in the crystallising beds. Calcium sulphate separates out in the making of roads. Recently it has been laid on the ground in the final condensing pans of the crystallisers. The pink colour in the crystals is very noticeable. Salt crystals are formed in large pans and not in small pans as is the practice in Madras and Bombay. These crystals are not raked and turned over as in the Kharaghoda salt works but allowed to grow to a depth of 7 to 8 inches, when thick lumps are taken out and sent to the crushing mills or broken up in smaller pieces. In one of the Mahomedan factory there is a German plant in which the salt is crushed and ground for the Bengal market. Most of the salt produced is shipped to Bengal and Rangoon and part of it to Zanzibar. The following table shows the quantity of salt exported from Aden —

	Tons	Tons	Tons	Tons	Tons
Zanzibar	3,150	1,055	420	931	1,200
Rangoon	20,041	8,275	7,700	9,550	9,000
Calcutta	86,119	90,224	114,820	123,910	161,435
Other places	75	541	12	4	108
Total	110,006	100,093	122,042	134,391	178,803
Value £	76,921	197,360	127,799	150,082	182,538

These figures show that the production of salt in Aden is gradually increasing year after year. The cost price of salt as is shown in the Sea Borne Trade figures works out at £1-1 per ton, or As 9-4 per Bengal Maund. This seems excessive. From enquiries made while at Aden I find that the cost of salt f o b is as under —

IX

FOREIGN SALT WORKS

French Salt Works.—In France solar salt manufacture is carried on the Mediterranean. There are 4 grades of salt made —

- (1) Fine salt
- (2) Semi-fine salt.
- (3) Lump salt
- (4) Rough large salt

The differences in prices between grades 1 and 2 is 5 Francs, and between grades 2 and 3 and 3 and 4, 2 to 3 Francs. An average analysis of the French solar salt is —

Sodium Chloride	97 56
Magnesium Chloride	0 07
Magnesium Sulphate	0 37
Moisture	2 00

This salt is produced from Mediterranean sea water, the analysis of which is given below —

	* I	II (Lament)
Sodium Chloride	30 182	27 22
Magnesium Chloride	3 302	6 14
Calcium Sulphate	2 542	0 15
Magnesium Sulphate	1 392	7 02
Potassium Chloride	0 518	<i>Nil</i>
Sodium Bromide	0 572	
Calcium Carbonate	0 117	0 09
Ferric Oxide	0 003	
Magnesium Carbonate		0 11
Potash		0 01
Water		959 06

* Works analysis in 1918

This Company has a capital of 8 million Francs and produces annually about 20,000 tons of salt. It has salt works at the following places —

- (1) Huyeres (on the other side of Marseilles)
- (2) Aigues Mortes
- (3) Cette
- (4) Villeroi

The Company is a combination of a number of other small concerns scattered at different places on the Mediterranean. At Aigues Mortes where there are five works in fairly close proximity the total combined output from the district is 80,000 tons on an average per year. The manufacture is entirely by solar evaporation at all these works, and no by-products are recovered in this district. Salt is not re-crystallised but a large portion of the salt made is washed with brine before stacking in heaps.

Salin de Villeroi — The layout of Salin de Villeroi is typical of the French saltern. Sea water of about 3° B is drawn from the Mediterranean where there is practically no tide. As there is no rise and fall in the sea level due to absence of tides, the sea water is raised at various stages by means of pumps. One of the pumps was made of wood with screw like blades. This pump or water wheel or elevator raises large volume of water to a height of about 6 feet, and was considered more economical than the other centrifugal pumps. Electric power is used for pumping and all other purposes. It was purchased from a public company at about 10 cms per K. W. H. before the War, and at 15 to 16 cms in 1918. The current is brought from the generating station which is over 100 Kms (62 miles) away at 10,000 volts and reduced to 100 volts.

The sea water is led through a series of reservoirs partly natural and partly constructed, varying from 1 foot to 4 or 5 feet in depth and contains 50 to 70 cms (20" to 28") of water. The brine is concentrated in these reservoirs upto to 25° B till all the Calcium Sulphate precipitates. The concentrated brine of 25° B is then run at about the end of June into a specially constructed rectangular pan. The depth of the brine in the pans is maintained

of 80,000 tons per year which is the average production of Aigues Mortes works The salt is brought by a canal into the central store and ground The grinding mill is made by C Wagmann of Zurich It consists of double mills, *viz.*, (1) Disintegrators and (2) Porcelain Rollers These turn out 2 tons of fine salt per hour and take about 8 to 10 h p. The approximate cost of a machine of this type would be 4 to 5 thousand Francs Before the War it cost only 2,000 Francs

All the machines, as at Cette, are driven by Electricity The power cost 17 cms per K W The cost of grinding to produce the fine so called table salt is said to be 3 Francs per ton Moveable cranes and elevators were used as at Cette for stacking the salt Electric wires are run all over the salins, so that pumps, cranes and other machinery can be conveniently worked

Compagnie de Produits Chimique and Electro-metallurgiques d' A lais Forges and Camargue

Salin-de-Giraud—This is a very large company, which makes besides salt for consumption, sea salt for the Solvay Soda Ash factory Its annual production is from 160,000 to 200,000 tons During the War the Company was also making explosives for the Government

It extends on the sea coast about 32 miles and along the river about six miles It is difficult to determine the exact area covered by these works, but the area is estimated at 30,000 hectares (75,000 acres) These works were founded originally in 1858 and considerably enlarged in the subsequent years The administration offices, workshop and factories occupy 100 acres near the station of Salin-de-Giraud

Solvay works are about 10 miles from the salt works A meter gauge railway line, about 16 miles in length, connects the interior of the works with the factory Of the total area 12,000 hectares (30,000 acres) are at present reserved for the production of 160,000—200,000 tons Each Hectare (2,471 acres) gives 180 to 200 tons of salt per year The salt is harvested from the middle of June

The following working of the Salins will give an idea of the process followed at these works —

- (1) Sea water of 3° B is run into reservoirs and brought up in them to 10° B. These reservoirs are shallow, about 3 3 feet deep and made of clay bottom. The French have solved the problem of evaporating huge quantities of sea water of low density in places not very well situated for solar evaporation as in the tropics. This they do by spreading the sea water in thin layers over vast areas and keeping the waters constantly moving by drawing off at various stages into long channels. This is done by a water wheel 15 feet in diameter and 3 feet wide driven by an engine. The water is raised about one metre from one level to another. The efficiency is said to be 60 per cent.
- (2) This is run into a second series of reservoirs and carried by zigzag courses, partly natural and partly artificially constructed.
- (3) From this it is run into the salt pans which are all laid together and brought upto 28° B. Salt is gathered upto $29\text{--}30^{\circ}$ B in these pans.
- (4) The mother liquor after the gathering of salt is run into a further set of crystallisers and brought upto 33° B where an impure Magnesium Sulphate mixed with salt crystallises out in a layer of about 4 inches.
- (5) The mother liquor of 33 to 34° B is pumped into three deep reservoirs and kept there during the winter. Here Magnesium Sulphate crystallises out at a low temperature, it is removed on separation, and then the remaining mother liquor is conveyed to the factory for further treatment. The depth of the first two sets of reservoirs in the first and the second stages given above are as shallow as possible. These reservoirs are constructed by earth embankments and the bottom made of natural clay. The depth varies upto one metre.

from the deposit of "mixed salt" (sodium chloride and magnesium sulphate) Formerly this was used for the manufacture of sodium sulphate, but this salt is now obtained more economically as a by-product in other industries

The mother liquors are next conveyed to four large communicating brick-work reservoirs (14 feet deep) with outlets for the discharge of the deposits of magnesium sulphate and are allowed to remain there during the winter When the temperature falls to 12°C magnesium sulphate is deposited, whilst to prevent the liquid from cooling below the point, when "carnalite" would also be deposited, the surface is covered with a layer of soft water from the Rhone

There forms at the bottom of the tank a very rich deposit of Magnesium Sulphate This deposit is not of uniform thickness and composition Certain layers are composed of fine crystals which are very white and very small There are also layers of irregular, thin, dirty and sticky crystals

	Small white crystals	Dirty and opaque crystals	Big dirty crystals
NaCl	2 19	0 54	2 20
MgCl ₂ , 6H ₂ O	0 50	0 50	3 04
MgSO ₄ , 7H ₂ O	88 56	97 78	89 79
Water by diff.	8 75	1 18	4 23
Insoluble			0 74

The annual production of this crude sulphate of magnesia is extremely variable It varies from 1,500 to 100 tons per year The product is sold as it is collected—no further attempt is made to refine it

The following spring the layer of the mother liquor, which will then have a density of 32 to 33° B (sp gr 1 285—1 296) is ready for the extraction of bromine This is effected by pumping the mother liquors into vessels each of which has a capacity of 20 cub m (706 c ft) and from this they descend in a regulated stream

The clear supernatent liquid is transferred to a crystallisation vessel in which it is cooled to about 20° C by means of cooling coils and the resulting deposit of carnalite is drawn off by means of buckets and drained in cylindrical vessels with false bottom. The final mother liquor is concentrated to about 40°B (sp gr 1.384) and is used partly for mixing with the liquors coming from the Ponion evaporators, and partly in the manufacture of crystalline magnesium chloride. The carnalite is washed with a limited quantity of water, e.g., 900 litres of soft water and 600 litres of washings of 28°B (sp gr 1.241) from a previous operation to 2,700 killos of the salt, in cylindrical vessel which is provided with mechanical agitators. After 4 hours, during which a part of the potassium chloride settles down and the mother liquor which is still rich in potassium chloride, is concentrated in Ponion evaporator for further treatment. The crude potassium chloride is washed in 3 ton lots for about an hour with 1 cb m of cold soft water in a cylinder provided with an agitator, and is then transferred into a vessel with a false bottom, where it is drained and is finally dried in a battery of hydro-extractors. The resulting product contains 72 to 75 per cent of potassium chloride but may be obtained in purer form by repeating the washing. About 600 tons of 72 per cent potassium chloride are thus obtained annually by the treatment of 15,000 cb m of mother liquors of 33°B (sp gr 1.296) in the marine salt works at Sahn de Giraud. The Company produces at this works 4 to 5 tons of Magnesium Chloride per day, though for every 20,000 tons of salt they can obtain 24 tons of Magnesium Chloride. For every 1 ton of Potassium Chloride the possible production of Magnesium Chloride is 6 tons, and 10 tons of Epsom salt.

Other French Salt Works—There are other French salt works in Nantes district. The salt produced in this district is dirty and requires to be re-crystallised. At Nancy there are rock salt deposits, which are worked on the same lines as at the works in England.

nesium and calcium sulphate. A detailed description of the Stassfurt industry is given in Thorpe (Vol IV, p 377). These deposits were worked mainly for potassium salts and epsom salts. Magnesium Chloride was treated as a by-product. In 1907 the production of the different salts was as under —

	Tons *
Potassium Chloride	473,138
Magnesium Chloride	32,891
Glauber Salt	80,340
Potassium Sulphate	60,292
“ Magnesium ”	33,368
Magnesium Sulphate	41,105
” ”	59,473
Alum	4,200
Total	7,848,814

Bromine is separated by treatment of the residual liquors with chlorine.

Manufacture of Salt in England — In England salt is obtained from rock salt deposits in Cheshire, Lancashire and several other places. At Northwich, the top bed is 75 feet thick and lies 130-150 feet below the surface. Similar deposits are found in Marston, Sandbach, Emsford, Lawton and Holford. Salt deposits are also found in Staffordshire and Yorkshire. The industry is confined mainly in Cheshire where the rock salt consists of a varying mixture of marls and salt, containing 98 per cent sodium chloride, 1.65 per cent calcium sulphate and 0.05 per cent Magnesium sulphate. The lower beds are worked by mining, the salt thus obtained is used chiefly for agricultural purposes. The Cheshire rock salt is chiefly associated with coloured marls to the extent of about 5 per cent of salt. The colour varies from red, brown and yellow to white. Natural brine is generally found on the upper surface of these salt deposits. This is drawn up through

of Cheshire in 1889, they issued a list of prices for the different grains of salt. The original prices were revised as under —

The cost of production was at that time calculated as follows—

For larger grains—	Per ton of salt
10 Cwts of coal at 5/-	2/6
Labour	1/0
	<hr/>
	3/6

Fine grain for India—	
14 Cwts Coal at 5/-	3/6
Labour	1/0
	4/6

With the ordinary open pans 1 ton of fuel (slack with 15—20 per cent of ash) will make 2 5 tons of salt

More recently considerable improvements have been made in the production of salt by Vacuum Evaporators. A well constructed triple-effect plant makes considerable saving in the cost of fuel, it does not require an extensive layout and the production is considerably increased. A good size of evaporator would yield from 500-700 tons in 24 hours as against 10 to 20 tons in direct fired pans. A triple effect evaporator gives from 5 to 6 tons of salt per ton of fuel.

It is usual to purify the brine used in these evaporators. The cost of purifying is reckoned at about 5/- per ton of brine. In a quadruple-effect evaporator there would be further economies in the consumption of coal. In a good quadruple effect evaporator a pound of coal which would give 6 lbs of steam in an ordinary boiler would give 21.5 lbs of steam. Consequently 2.5 to 3 cwt of coal would be required for obtaining salt from saturated

It will be seen that the cost price of salt has gone up from 14s to very nearly 42s or three times in seven years In certain plants where instead of coal, waste gas from blast furnace or steam from power stations have been used, there had been a striking economy in the cost of production By this means, one firm in 1913 was able to produce salt at 50 per cent of the cost of the Salt Union By the Vacuum method the Salt Union, Ltd, can produce salt more cheaply, at about 6s per ton than by the open pan method Vacuum salt however, being 25 per cent denser than open pan salt cannot be economically used for many of the purposes for which the more coarse grained salt is used As the greater quantity of salt made in England is salt produced by the open pan method, the ruling prices are fixed on the basis of the cost by that method After the Armistice the Salt Manufacturers' Association proposed to regulate their price by 6d per ton for each subsequent increase of 1s in the rate of wages and 9d per ton for each subsequent increase of 1s per ton in the price of coal The total cost of distribution, including warehousing, delivery, administration, etc, was in 1913 9s per ton for all qualities, whereas in 1919 it was 27s or an increase of 21 per cent The cost of delivery alone, comprising horses, vans and carmen is put at 2s 11d per ton in 1913, and 11s 2d in 1919 In 1920, an increase of 5s 6d per ton was made in the Manufacturers' price fixed by the Association This increase was due to an increase of wages by 8s per week, and an increase in the price of coal by 2s 2d per ton due to increased railway rates Subsequent to this increase in the price of salt, wages and coal have gone up, and the total rise in the price of coal would be 4s 8d If salt is intended for shipment to India, the following charges have to be added —

Loading into barges, canal dues, weighing and bonding at Liverpool wharfage—About 3 to 6s per ton

Freight from Liverpool to Calcutta In pre-war days it was 5s when it was shipped mostly as ballast The total cost from mines to Calcutta would be—

depth of 1,600 feet and over At Ludington the deposit is at a depth of 2,300 feet and at Manistee at 2,000 feet

New York—New York is second among the States in regard to salt production The important deposits are at Wyoming Otken Valley-Genessee Valley and round about Onondaga Lake particularly at Syracuse At Ithaca, salt was found at a depth of 3,185 feet In the Onondaga valley water from Tully lake flows by gravity to the salt layers and becomes saturated with it This brine was transported through pipes to the Soda Ash factory of the Solvay Process at Syracuse The site of this factory is 360 feet lower than the mouth of the wells

Ohio—Ohio is third in importance for salt production At Hadsell the salt deposits are found at a depth of 3,258 feet At Pomeroy natural brine is obtained in a salt sand strata of 170 feet at a depth of 960 feet At this place brines were struck at 320 feet, density 6° B, at 710 feet density 9° B, at 980 feet, density 9°B, and at 150 feet density 16°B At Hartford brine was obtained at 1,050 feet The density varies with the dip of the rocks, *viz*, from 8 to 10 5°B, the heavier brines seeking the lower level

West Virginia—Is an important producer of salt from brines These brines are a good source of Bromine and Calcium Chloride,

Pennsylvania—Is also known for its brine wells In Pittsburg one well, one of the deepest in Pennsylvania—reached a depth of 4,089 feet Brine appeared in this well at 1,405 feet Another well known as the Derrick City or Bradford City well reached a depth of 5,820 feet and struck 4 beds of salt ranging in thickness 10 to 47 feet Another deep well—the McDonald well gave brine at a depth of 6,825 feet and rock salt between 6,825 and 7,175 In Virginia formations, limestone, Gypsum and salt deposits occur at the same place in different strata

Recovery of Salt from Sea Water—This is confined mainly to the West Coast The season begins about the middle of April and ends about the middle of October—generally about 5 months The longest season known is of 210 days During the summer

to the ponds for concentration and crystallisation. It then settles for 5 or 6 days in the settling ponds, and is then led to the stock or evaporating ponds, where it is allowed to remain till it is completely saturated and the salt is about to deposit. It finally passes on to the harvesting ponds. The ponds are separated from each other by clay embankments, 2 feet wide and 22 inches high, held in place by boards set on edge. The brine flows by gravity from pond to pond its flow being controlled by small gates. It takes 30 days for the brine to reach from the lake to the crystallising beds. The bitters are drawn off twice during the season. Care is taken to prevent the crystallisation of sodium sulphate which is said to take place when the water reaches 25° F. Talmage believes that the critical temperature of formation is 35° F. Careful experiments carried out in the laboratory of the U. S. Geological Survey have shown that brine from the lake of 1.145 sp. gravity becomes saturated with mirabilite $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ at 1°C or 34° F. The average crop is about three inches.

Solar Salt from natural brines—Formerly natural brine varying in density from 17-20° B was successively led to 3 sets of “rooms” or shallow wooden vats or “covers” provided with low moveable roofs in sections of 16 feet and running on rollers. The area of each section was 288 sq. feet.

Size of lime salt rooms—18 feet wide, 400-500 feet long, 6" deep. Two-thirds of the total area is taken up by these rooms.

Deep Rooms—Brine is first led into these. They serve mainly for the storage of pumped up brine. Their sizes vary considerably but they are from 12 to 14 inches deep. These deep rooms serve for settling brine.

Lime Rooms—They are so called, not because of any lime being used in the process, but on account of the Gypsum that separates out in these rooms.

Salt Rooms—In these vats brine is concentrated to saturation and the salt separated from the pickle. In all these rooms the brine is moved by gravity. The difference in levels between these sets of rooms is 6-8 inches.

sides are provided with drain board 3 feet wide along the entire length of the pans. The pans are in three sections. The section at the back where brine enters is from 30 to 48 feet long. The front part is divided into two sections, the one nearest the back is 30 feet long and the remaining about 70 feet long. These pans are heated by fuel, mainly coal or natural gas. In some instances the brine before it is admitted to the back pan is preheated in a tank built at the base of the chimney, where the waste heat of the flues is made use of. The draining of the separated salt is very carefully controlled. The resulting bittern is removed from time to time.

Manufacture of Salt by Steam evaporation—Phalen has described in great detail the preparation of salt by the Grainer Process. The following description will give a general idea of the process carried out in the States, though it differs in details in different districts. The manufacture of salt by the grainer process is often carried on in conjunction with some other industry. In Michigan the industry has grown up largely with the lumbering industry. In some places heat is derived from waste heat, from electric plants and other exhaust steam.

The brine which usually comes as stated before from 700 feet below the furnace is first passed into the settling tanks, where gases like Hydrogen Sulphide which are present in the brines are allowed to escape. In the settling tanks iron compounds also separate on aeration of the brine. Milk of Lime is then added, the brine agitated and then again allowed to stand for several days. If there is an excess of lime soda ash is added. The clear brine is either sent to the grainer, or in some cases passed through pre-heaters, where the heat of the chimney gases is utilised. In the grainer process the purification of brine is of considerable importance. The grainer or Michigan process of salt making is entirely of American origin. It consists in passing live or exhaust steam through metal pipes that are emerged in the brine to be evaporated. The grainer is a long, narrow shallow vat, built of wood or metal, supported on a framework or on cement or concrete supported

and heated by exhaust steam that entered at an average temperature of 216.6° F, and had an average quality of 97 per cent. The grainer was 143 feet long and 10.67 feet wide at the average level and was filled with brine to an average depth of 1.229 feet. It contained 1,072 feet of 3.5 inch pipe, the ratio of the evaporating (grainer) area to the heating surface being 1.34. The brine at 92.5 per cent saturation was run into the grainer at a temperature of 71.6° F and the test was continuous for 192 hours, at the end of which time the saturation of the bittern unduly impeded evaporation. At the start, evaporation was continued till the level of the brine had lowered nearly to the steam pipes in the grainer. The quantity evaporated was then restored by introducing new brine, and this process of alternate evaporating and filling was continued throughout the test. The results of the run are summarised in the following tables —

RESULTS OF OPERATING A GRAINER IN MICHIGAN FOR
192 HOURS

Item	Pounds
Total production of hot salt	110,950
Production of hot salt per hour	577.8
Equivalent in seasoned packed salt per hour	534.5
Total condensation of water from grainer pipes	410,368
Condensation per hour	2,137
Equivalent condensation of dry steam per hour	2,073
Production of hot salt per square foot of grainer surface	72.7
Production of hot salt per square foot of heating surface	97.9
Production of hot salt per linear foot of 3.5 inch steam pipe	102.5
Production of hot salt per cubic foot of brine	13.46
Condensation of dry steam per cubic foot of brine	46.8

Willcox calculates that the efficiency represented by these figures corresponds approximately to the evaporation of 8322 pounds of water by one pound of coal. He adds that in the usual operation of this grainer the bittern is replaced by new brine every 5 days, 2 hours being lost at each filling, and that services of 4 men for 3 hours are required to scale the pipes every 30 days.

At this time, when the country is suffering from an acute shortage of potassium salts, the amount of potassium chloride indicated above is of considerable importance. During the first half of 1917 the total potash production of the country, calculated on the basis of K₂O, was 14,000 tons, which amount was but 10 per cent of the normal amount used before the war. It is evident that the amount of potash that could be extracted from the bitterns of the salt works on San Francisco Bay alone would add about 10 per cent to the country's present annual production of potash. The amount of salt actually produced in this region is nearly 140,000 tons per annum, so that a liberal allowance for losses in working up the bittern should leave still 3,000 tons of potassium chloride. By utilizing the bitterns from other regions on the Pacific Coast, notably San Diego, this amount would be very greatly increased.

The other materials mentioned in the above table also represent very considerable values, although they have less relation to the present national emergency.

After the removal of most of the common salt in the salt ponds the other salts would be contained in approximately 100,000 tons of bittern, having a volume of approximately 100,000 cubic yards.

The values represented by these materials, and their importance both as a natural resource of California and in supplying the country with potash in the present acute emergency, made the study of this problem seem a proper one to undertake at this time.

Scientific Basis of Methods for Recovery of the Constituents of Bittern

We are very fortunate to possess a vast fund of information upon the solubility relationships of the various salts obtainable from sea water through the classic work of van't Hoff and his co-workers. This work is described in great detail in "Über die Bildungs-verhältnisse der ozeanischen Salzablagerungen" (Leipzig Verlagsgesellschaft, 1912). During the progress of the work two smaller volumes were published in 1905 and 1909 by van't Hoff, entitled "Zur Bildung der ozeanischen Salzablagerungen" (Braunschweig, Vieweg).

The solubility of a given salt is varied by the introduction into the solution of another salt. The effect of the second salt can be predicted qualitatively by remembering that where the salts possess a common ion, the solubility of each is usually decreased by the presence of the other. If, however, there is a strong tendency to form a complex salt the solubility of one may be increased by the presence of the other. Again, where there is no common ion, the solubility of one is increased by the presence of the other owing to the interaction of the two salts.

There are various ways of representing graphically the solubility relationships of salt pairs. The method adopted by van't Hoff is to represent the amount of each salt in the solution in terms of mols of anhydrous salt per 1000 mols of water, measured along two axes at right angles to each other, as illustrated in Fig. II. Each curve

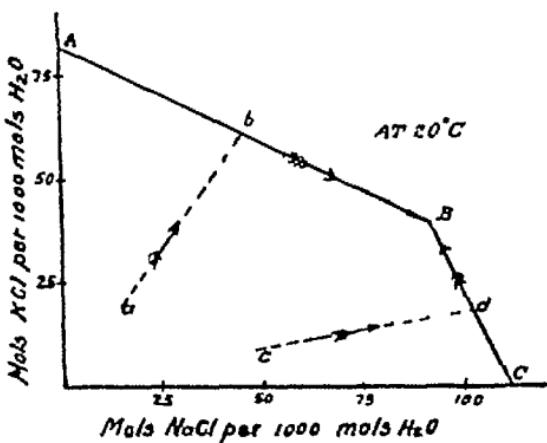
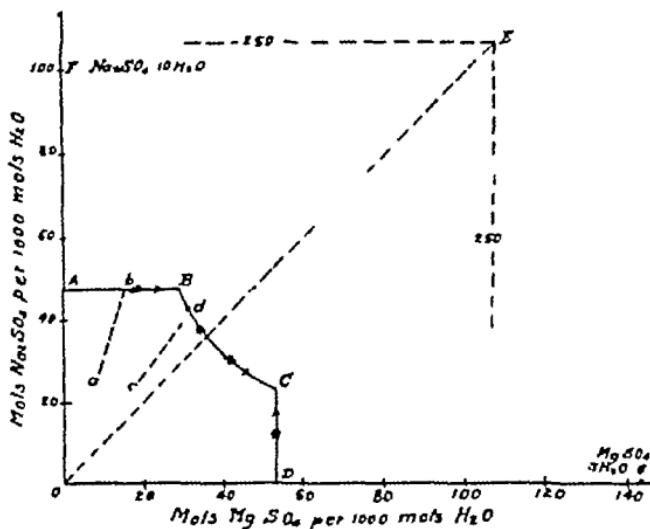



FIG. II

here represents the composition of a solution saturated with one component. The intersections of the curves represent the composition of a solution saturated with both components. A point between these curves and the origin denotes the composition of an unsaturated solution. A point outside of the curves would represent a mixture of a saturated solution with one or both solid salts, depending upon its position. On evaporation of an unsaturated solution, the relative amounts of the two salts would remain the

that in Fig. IV. This diagram represents the solubility at 30° of mixtures of sodium sulfate decahydrate, and magnesium sulfate.

FIGURE

heptahydrate, which form the double salt, astrakanite, $\text{Na}_2\text{Mg}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$. The middle portion of the curve seen in this figure represents the composition of solutions saturated with astrakanite. Solid astrakanite, which contains equivalent quantities of the two salts, has a composition lying upon a line bisecting the angle between the two axes. The composition of the solid salt is represented by a point on this line at E , expressing the number of mols per 1000 mols of water in the solid salt. The composition of solid sodium sulfate, $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$, which lies along the line OA , is at a distance from the origin corresponding to its water content at F . Similarly, solid magnesium sulfate has the composition represented by the point G . When an unsaturated solution containing these salts is evaporated, its composition will, as in the previous case, move along a line away from the origin until one of the curves representing the composition of the saturated solution is reached, when the solution will change in composition along this line in the direction away from the line representing the composition of the solid which is separating. Thus a solution having the composition

sition till b has been reached, whereupon potassium chloride begins to crystallize out, and the solution, becoming richer in magnesium chloride, will move along bC . When the solution has reached the composition represented by C , carnallite will begin to separate but since carnallite contains more potassium chloride than does the saturated solution at C , it is evident that while carnallite crystallizes, the solution will tend to move along the line CB instead of remaining at C . The phase rule, however, requires that while both potassium chloride and carnallite are present, the solution must remain constant in composition at C . Therefore, instead of the liquid phase disappearing at this point, as was the case in the former salt pair, it is one of the solid phases, potassium chloride, which will now disappear, being changed over into carnallite. It is not until all of the potassium chloride has been so changed that the solution can move from C to B . B will thus represent an endpoint of crystallization, while C will not. It is evident, therefore, that in order to prepare crystals of carnallite it is necessary to use a solution containing more than the equivalent amount of magnesium chloride, the relative amounts of the two salts being such that, on evaporation, the line BC will be intersected slightly above C . Similar considerations show us that on treating solid carnallite with water, instead of dissolving as such, it would tend to change into solid potassium chloride and a solution whose composition is that represented by C . It is obvious, therefore, that it is not difficult to obtain potassium chloride from carnallite, a point of importance in the treatment of salt bitters, as will be discussed later. After the removal of the potassium chloride the solution can be evaporated, carnallite separating, while the composition of the solution changes from C to B . This carnallite can be treated with water, leaving solid potassium chloride, etc.

Solutions containing magnesium and potassium chlorides and sulfates are in equilibrium with solid phases at 25° according to the data in Table 1, and are represented by van't Hoff along four axes as in Fig. VI, each pair of axes representing solutions containing a

common ion. The boundary lines correspond to solutions saturated with the two constituents represented by the enclosing axes. Where salt pairs containing no common ion are present, it is impossible to represent the composition by a point in the plane of this figure. A mixture of equivalent quantities of potassium sulfate and magnesium chloride would evidently lie at the origin O and would be indistinguishable from pure water by its position in the plane. In order to make this distinction it is necessary to introduce a vertical axis representing the sum of the constituents of the solution. Again, since equivalent quantities of potassium sulfate and magnesium chloride in solution may be represented equally well as equivalent amounts of magnesium sulfate and potassium chloride, by plotting along the potassium chloride axis not mols of potassium chloride, but double mols, namely, K_2Cl_2 , it is possible to construct a solid model expressing the composition of solutions containing any amounts of these

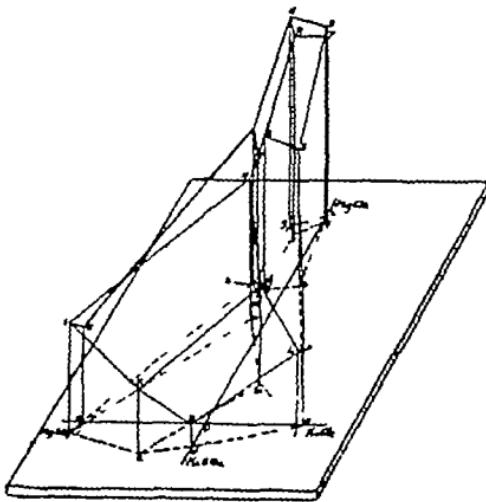
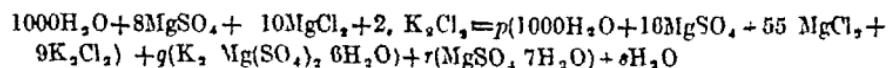
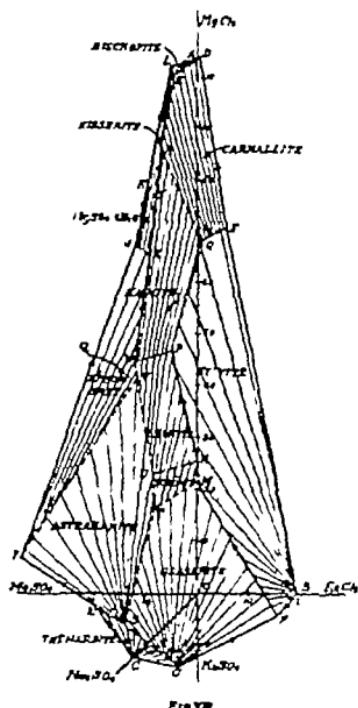



Fig. VII

ions. Such a model, a perspective drawing of which is seen in Fig. VII, may be constructed by inserting needles at the intersections of the lines in the plane figure, the heights of the needles being equal to the total number of mols of dissolved salt in the solution at this point, always remembering to consider the mol of potas-

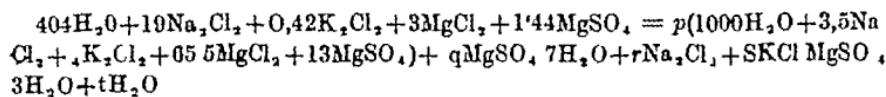
diagonal which joins the origin with the point representing the composition of this solution will be found to intersect the schonite face, showing that this would be the first salt to separate on evaporation. As evaporation proceeds the crystallization path would meet the boundary line of this face with the magnesium sulfate face, after which these two salts would separate together. Suppose, for example, we wish to calculate the actual amounts of these two salts separating and the amount of water that must be removed when the point N has just been reached, at which potassium chloride just begins to separate. The solution at N has the following composition $1000H_2O + 9K_2Cl + 16MgSO_4 + 55MgCl_2$. The amount of this solution we may represent as an unknown quantity by p , the amount of schonite separating we may represent by q , the magnesium sulfate by r , and the amount of water removed by s . We may then represent what has become of the original solution during evaporation by means of the following equation—

By equating co-efficients of the various substances present, it is possible to set up the following equations


$$\begin{aligned} \text{Co-efficients of } H_2O & 1000 = 1000p + 6q + 7r + s \\ \text{Co-efficients of Mg} & 18 = 71p + q + r \\ \text{Co-efficients of } K_2 & 2 = 9p + q \\ \text{Co-efficients of } Cl_2 & 12 = 64p \end{aligned}$$

The solution of these equations gives the following values

$$= 188, q = 0.31, r = 4.38, s = 779$$


These values of q , r and s represent the amounts of the respective substances which have separated by evaporating the original solution and p represents the amount of solution left. If, instead of taking the amount of the original solution represented by 1000 mols of water, a different amount is taken, proportionate amounts of the solids and water are obtained from the solution on evaporation to the same point. When we come to consider the evaporation of sea water, we have in addition to the above components large amounts of sodium salts. Since during evaporation sodium chloride is always present, it is possible to represent saturated solutions

chloride as another component no new degrees of freedom are introduced, provided it is stipulated that solid sodium chloride shall always be present. Van't Hoff and his co-workers have determined the solubility relationships at 25° and 83°. Fig VIII represents the results for 25° contained in table 2, results for 83° are

found in Table 3 and Fig IX. The amount of sodium chloride present is not considered in the projection, but is counted in the total number of dissolved mols which would be represented in a solid model. Sodium sulfate may be expressed in terms of the other salts present, since $\text{Na}_2\text{SO}_4 = \text{Na}_2\text{Cl}_2 + \text{MgSO}_4 - \text{MgCl}_2$, or $= \text{Na}_2\text{Cl}_2 + \text{K}_2\text{SO}_4 - \text{K}_2\text{Cl}_2$. Thus point C, Table 2, is represented in Fig VIII by counting $12\frac{1}{2}$ divisions to the left of the origin and $12\frac{1}{2}$ divisions along the K_2SO_4 axis. Its position in a space model would be $63\frac{1}{2}$ divisions vertically above the point so obtained. Such a model may be constructed in a way similar to that previously described.

point *a*, where Epsom salts would begin to separate. The composition of the solution at this point is approximately 1000 H₂O, 0.11 Na₂Cl₂, 6K₂Cl₂, 20MgSO₄, 41MgCl₂. Further evaporation would lead to the boundary between this field and the kainite field *WX*, after which these two salts would separate together. It is possible to calculate as before the amounts of each substance removed from the solution when the latter has the composition indicated, say, by *X*. Suppose that 10,000 g of the original solution are used. The number of grams corresponding to the number of mols of each substance in the original solution is 24,790, so that 10,000 g of solution would contain, instead of the previous number of mols of each constituent, only 0.404 of these quantities, namely, 404H₂O, 19Na₂Cl₂, 0.42K₂Cl₂, 3MgCl₂, and 1.44MgSO₄. On evaporation this solution would yield *p* mols of the solution saturated at *X*, containing its constituents in the proportions indicated in Table 2, together with *q*MgSO₄·7H₂O+*r*Na₂Cl₂+*s*KCl·MgSO₄·3H₂O+*t*H₂O. We can, therefore, write the following equation

By equating corresponding coefficients and solving the resulting equations, we obtain the following values

$$p = 0.0458, q = 0.37, r = 18.9, s = 0.47, t = 354$$

Hence we conclude that 354 mols of water have been evaporated, and 0.37 mol of epsom salts, 18.9 mols of Na₂Cl₂, and 0.47 mol of kainite are in the solid portion. Similar calculations may be made to determine what will happen during all sorts of changes. For example, instead of removing water, a certain salt may be added to a solution saturated with other salts, and by the aid of geometric and algebraic considerations it will be possible to determine what will take place.

It is evident from the position of point *a* in the diagram for 25° that only a small amount of Epsom salts will have been crystallized by evaporation of the mother liquor from sea water before kainite

H_2O is obtained. The fact that the solubility of magnesium sulfate tends to decrease at higher temperatures, while the solubilities of potassium chloride and magnesium chloride, and hence carnallite, increase, causes the kieserite field at 83° to become large at the expense of the fields of potassium chloride and carnallite. It is evident, therefore, that most of the sulfate present in the solution could be removed as kieserite by evaporating the bittern at higher temperatures until the carnallite boundary is approached. During this evaporation, the solids which separate would be sodium chloride and kieserite. By removing these from the hot solution they could be obtained relatively uncontaminated with potassium. If, now, the mother liquor from these crystals is cooled, the growth of the carnallite field as lower temperatures are reached indicates that this salt would separate as the solution cools, while the mother liquor from the carnallite would consist largely of a solution of magnesium chloride. These considerations seem to indicate the possibility of a satisfactory process for the separation of the bittern into three main constituents—magnesium sulfate, carnallite, and a solution of magnesium chloride. There would remain the necessity first, of separating magnesium sulfate from the sodium chloride accompanying it, second, of treating the carnallite for the recovery of potassium chloride, according to the principles discussed earlier, and, third, the evaporation and cooling of the magnesium chloride liquor to obtain $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$.

Evaporation Experiments.

The process outlined above, on the basis of the equilibrium diagrams, was first tested on a laboratory scale by evaporating weighed quantities of bittern. In one set of experiments the evaporation was carried on at the boiling point of the solution. Crops of crystals were removed from the solution from time to time by centrifuging the liquid through a muslin bag. The density of the solution was read by the aid of a hydrometer made of pyrex glass, the small coefficient of expansion of which made its readings nearly correct in spite of changes of temperature. The

evaporation, the solution is saturated with sodium chloride but not with magnesium sulfate, hence the first crystals to separate consists largely of sodium chloride, which was found to be the case with the aid both of the microscope and of a chemical analysis. It is possible, therefore, to remove an additional amount of sodium chloride from the magnesium sulfate by filtering the hot solution by the aid of the centrifuge during the early stages of the evaporation. This procedure simplifies the further purification of the magnesium sulfate which separates as evaporation proceeds. Table 4 gives the results of the analysis of the crystals removed from the solution by the aid of the centrifuge at the stages of evaporation indicated in Fig. X.

TABLE 4

	Crop 1	Crop 2	Crop 3	Crop 4	Crop from cooled mother liquor from 4	Crop from final evaporation
MgSO ₄	15.1	24.6	20.1	24.1	1.3	3.5
MgCl ₂	12.0	12.3	21.8	16.9	39.2	38.2
KCl	4.8	6.3	4.4	17.1	3.6	1.1
NaCl	20.3	20.3	13.3	17.0	1.3	
H ₂ O	52.8	36.4	40.5	24.9	54.7	57.5

The centrifuge employed was not very efficient, and some cooling took place during the process, so that the respective crops are contaminated with the salts that should remain in the mother liquor. It is evident from the results of this analysis, together with the course of the density and boiling-point curves, that the process contemplated furnishes the desired separation. In a second experiment, based upon the results of the first, the solution was evaporated until the density had reached a value of 1.35 at the boiling point of the solution, 121°. The crystals separating up to this point were removed and the mother liquor allowed to cool. The crystals separating on cooling should be carnallite, and it will be seen from the analysis of these crystals in Table 5 that their composition

temperature than that in Fig X. This is doubtless due to the use of different samples of bittern in the two experiments, so that the carnallite field is encountered at different points in the two cases. It may be noticed that the break is more pronounced in the case where it occurs at the lower temperature which is just what would be expected on the basis of the solubility diagram in Fig IX. The composition of the two samples of bittern used in the above experiments is given in Table 6. The sodium content is not given.

TABLE 6

	Bittern used in getting curves*	
	in Fig X	in Fig XI
K	1 48	1 76
Cl	15 82	18 22
SO ₄	5 81	3 88
Mg	5 38	6 32

Outline of Proposed Process

1 **Evaporation of the bittern**—The bitterns from various sources will vary somewhat depending on the temperature of the liquid in the last salt pond, and whether or not any Epsom salts are allowed to separate. There is, in fact, no reason apparent why a crop of Epsom salts should not be removed by cooling either artificially or by storage till winter, before the subsequent process of separation is applied. The process of solar evaporation should not, however, be carried far enough to cause any potassium salts to crystallize, as it is probably not desirable to separate the potassium content into two portions. The variations in the composition of the bittern caused by any of the above factors would not cause any serious difficulty, as during the later evaporation the separation of NaCl and MgSO₄·H₂O, kieserite, would take place in such proportion as to make the resulting liquid converge towards a fairly uniform composition.

It is more important, under present conditions, to recover all of the potassium salts, and hence to prevent their contaminating the NaCl and kieserite fraction, than it is to recover all of the Epsom

and kieserite is run into centrifuges, previously heated, where it is separated from the adhering mother liquor, which is run into the cooling tank mentioned above. The separation of the NaCl from the material remaining in the centrifuges and the recovery of Epsom salts will be discussed later.

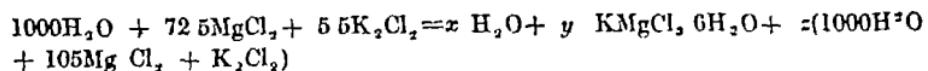
2 The Recovery of the Carnallite—The liquor containing the carnallite may be cooled by the fresh bitters going to the evaporator in order to utilize the heat content of the latter. After it has been thoroughly cooled, the carnallite which has separated is removed and freed from its mother liquor by centrifuging. The recovery of the potassium chloride from this carnallite will be discussed later.

3 The Recovery of Bromine and Magnesium Chloride—The mother liquor from the carnallite contains a very little potassium, a little sulfate, a considerable amount of colloidal organic matter, the bromine content of the sea water, and a large amount of magnesium chloride. The liquid must be evaporated further in order to recover $MgCl \cdot 6H_2O$. During this evaporation, however, the temperature rises considerably, unless vacuum evaporation is employed, charring the organic matter, and strongly darkening the magnesium chloride which separates on cooling. To destroy this organic matter, therefore, as well as to recover the bromine, preliminary treatment with chlorine is desirable. The details of this treatment are now the subject of investigation in this laboratory. We can only say at the present time that there seems to be good prospect of success.

The disposal of the large quantities of magnesium chloride that would be obtained from these bitters presents an economic problem. The possible outlets seem to be as follows: magnesium oxychloride cement, magnesium oxide and hydrochloric acid, and metallic magnesium. The use of magnesium oxychloride cements might be greatly increased by skilful advertising, hydrochloric acid might be substituted for sulfuric acid for certain purposes, and there seems to be good reason to anticipate a large production of magnesium in the future.

Now the material obtained from the first stage of our process contains $MgSO_4$ and $NaCl$ in nearly equivalent amounts and hence, if dissolved in water, would be represented by a point lying nearly vertically above the origin, at a distance increasing as the solution is evaporated. It might, therefore, cut the surface of the solid model in the astrakanite face, which would prevent the separation of the sodium from the magnesium. A little magnesium chloride however, would, if added, raise the solution away from the astrakanite field, so that we would have only $NaCl$ and $MgSO_4 \cdot 7H_2O$ to deal with.

The solubilities of these two salts are affected so differently by the temperature that we may anticipate their separation by first cooling, removing Epsom salts, then evaporating partly at higher temperatures, removing sodium chloride, then cooling again, etc. The portion of the equilibrium diagram that can be constructed for 83 from van't Hoff's data shows that at that temperature


TABLE 7
System $NaCl$ - $MgCl_2$ - $MgSO_4$ - Na_2SO_4 , at 25°

Solid phases	Na_2Cl_2	$MgCl_2$	$MgSO_4$	Na_2SO_4
Na_2Cl_2	55 5			35 5
$Na_2SO_4 \cdot 10H_2O$			58	
$MgSO_4 \cdot 7H_2O$		108		
$MgCl_2 \cdot 6H_2O$				
$MgCl_2 \cdot 6H_2O$, Na_2Cl_2	2 5	103		
Na_2Cl_2 , Na_2SO_4	51			12 5
Na_2SO_4 , $Na_2SO_4 \cdot 10H_2O$ (*)	30			27
$Na_2SO_4 \cdot 10H_2O$, $Na_2Mg(SO_4)_2 \cdot 4H_2O$			35	35
$MgSO_4 \cdot 7H_2O$, $Na_2Mg(SO_4)_2 \cdot 4H_2O$			48	26
$MgSO_4 \cdot 7H_2O$, $MgSO_4 \cdot 6H_2O$		73	15	
$MgSO_4 \cdot 6H_2O$, $MgSO_4 \cdot 6H_2O$		Not determined		
$MgSO_4 \cdot 6H_2O$, $MgCl_2 \cdot 6H_2O$		104	14	
Na_2Cl_2 , Na_2SO_4 , $Na_2Mg(SO_4)_2 \cdot 6H_2O$	46		16 5	3
Na_2SO_4 , $Na_2SO_4 \cdot 10H_2O$, $Na_2Mg(SO_4)_2 \cdot 4H_2O$		Not determined		
Na_2Cl_2 , $MgSO_4 \cdot 7H_2O$, $Na_2Mg(SO_4)_2 \cdot 4H_2O$	26	7	34	
Na_2Cl_2 , $MgSO_4 \cdot 7H_2O$, $MgSO_4 \cdot 6H_2O$	4	67 5	12	
Na_2Cl_2 , $MgSO_4 \cdot 6H_2O$, $MgSO_4 \cdot 6H_2O$	2 5	71	9 5	
Na_2Cl_2 , $MgSO_4 \cdot 6H_2O$, $MgCl_2 \cdot 6H_2O$	1	102	5	

(*) From the experimental work of Professor W C Blasdale, which is still in progress in this laboratory, this point may be considerably in error.

used somewhat more water would be required, but relatively less KCl would be dissolved

The liquor used in extracting the carnallite may then be partly evaporated and cooled whereupon another crop of carnallite crystals will be obtained. To obtain the maximum amount of carnallite but no magnesium chloride, the solution should be evaporated to such an extent that on cooling with separation of carnallite its composition will correspond to point *B* in Fig. V, which is $1000\text{H}_2\text{O} + 105\text{MgCl}_2 + \text{K}_2\text{Cl}_2$. The amount of evaporation necessary is calculated from the following equation

This gives $x = 340$, $y = 9.8$, $z = 0.6$, hence 25720 g of solution should lose 6120 g of water, giving 2720 g of carnallite on cooling; or, 1 ton of solution should lose 0.238 ton of water, and deposit 0.107 ton of carnallite

It will probably not pay, here or in stage 2 of the process, to recover the small amount of potassium chloride remaining in the mother liquor from the carnallite

Condensed summary of the above process

Evaporate bittern till boiling point becomes about 120° , and density (hot) 1.35 Separate solid and liquid while hot (settling tank and centrifuge)

A Solid NaCl and $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ Dissolve out NaCl with cold water (containing some MgCl_2 !), dissolve residue in hot water and cool with ice machine, getting $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$

B Liquid. Cool.

I. Solid carnallite Extract with minimum amount cold water, leaving 1 Solid KCl

2 Solution Evaporate partly cool

a Solid carnallite, add to I.

b Solution of MgCl_2 , add to II

II. Solution mainly MgCl_2 Bleach with Cl_2 , and remove Br_2 Evaporate cool, recover solid $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$

The above process is being tested in this laboratory on a semi-commercial scale under the direction of Professor Merle Randall and will be described in a later publication. It may be mentioned, however, that an excellent separation of actual bittern has been

IX.

TABLES

Table I

CONVERSION OF WEIGHTS AND MEASURES

One Imperial gallon

= 277 274 cubic inches
 = 0 1604 cubic foot
 = 10 lbs pure distilled water
 62 F

= 4 5459631 litres

= 1.8 Bushel

= 70,000 grains

= 1728 cubic inches

= 6 2355 gallons

= 62 35 lbs 62° F

= 28 32 litres

= 27 73 cubic inches

= 1 796 cubic feet

= 11 2 gallons

= 35 93 cubic feet

= 224 gallons

= 0 21998 gallon

= 61 027 cubic inches

= 2 1998 lbs

= 1 773 cubic inches

= 3 2808 feet

= 35 3148 cubic feet

= 5,280 feet

= 4 840 square yards

= 640 acres

One cubic foot of water

One pound of water

One cwt of water

One ton of water

One litre of water

One ounce of water

One metre

One cubic metre

One mile

One acre

One square mile

SALT

TABLE II—(Continued)

°C	°F	°C	°F
95	203 0	123	253 4
96	204 8	124	255 2
97	206 6	125	257 0
98	208 4	126	258 8
99	210 2	127	260 6
100	212 0	128	262 4
101	213 8	129	264 2
102	215 6	130	266 0
103	217 4	131	267 8
104	219 2	132	269 6
105	221 0	133	271 4
106	222 8	134	273 2
107	224 6	135	275 0
108	226 4	136	276 8
109	228 2	137	278 6
110	230 0	138	280 4
111	231 8	139	282 2
112	233 6	140	284 0
113	235 4	141	285 8
114	237 2	142	287 6
115	239 0	143	289 4
116	240 8	144	291 2
117	242 6	145	293 0
118	244 4	146	294 8
119	246 2	147	296 6
120	248 0	148	298 4
121	249 8	149	300 2
122	251 6	150	302 0

SALT

TABLE III—(Continued)

B	Sp Gr	T _w	Saline'er
24 5	1 205	41 0	94 23
25	1 210	42 0	96 15
25 5	1 215	43 0	98 08
26	1 220	44 0	
26 5	1 225	45 1	100
27	1 230	46 2	
27 5	1 236	47 2	
28	1 241	48 2	
28 5	1 246	49 3	
29	1 251	50 4	
29	1 257	51 5	
29 5	1 262	52 6	
30	1 268	53 7	
30 5	1 274	54 8	
31	1 280	55 9	
31 5	1 285	57 0	
32	1 291	58 2	
32 5	1 296	59 4	
33	1 302	60 5	
33 5	1 308	61 6	
34	1 314	62 8	
34 5	1 320	64 0	
35	1 326	65 2	
35 5	1 332	66 4	
36	1 338	67 7	
36 5	1 345	69 0	
37	1 351	70 2	
37 5	1 357	71 4	
38	1 364	72 7	
38 5	1 370	74 0	
39	1 377	75 3	
39 5	1 384	76 6	
40	1 391	78 0	
40 5	1 397	79 4	
41	1 404	80 6	
41 5	1 411	82 0	
42			

SALT

Table V

SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM CHLORIDE.

Per cent. NaCl	Spec grav at 15°	Spec grav at 20° (Schiff)	Per cent NaCl	Spec. grav at 15°	Spec. grav at 20° (Schiff)
	15° (Gerlach)			15° (Gerlach)	
1	1 00725	1 0006	15	1 11140	1 1090
2	1 01450	1 0133	16	1 11038	1 1168
3	1 02174	1 0201	17	1 12730	1 1247
4	1 02899	1 0270	18	1 13523	1 1327
5	1 03624	1 0340	19	1 14315	1 1408
6	1 04306	1 0411	20	1 15107	1 1490
7	1 05108	1 0483	21	1 16031	1 1572
8	1 05851	1 0550	22	1 16755	1 1655
9	1 06693	1 0630	23	1 17580	1 1738
10	1 07335	1 0705	24	1 18404	1 1822
11	1 08097	1 0781	25	1 19228	1 1906
12	1 08859	1 0857	26	1 20098	1 1900
13	1 09622	1 0934	26 4	1 20433	
14	1 10384	1 1012	27		1 2075

Table VI

BOILING POINTS OF SOLUTIONS OF SODIUM CHLORIDE

NaCl per cent.	Boiling point Degrees	NaCl per cent.	Boiling point. Degrees	NaCl per cent.	Boiling point Degrees
1	100 21	11	102 86	21	105 81
2	100 42	12	102 94	22	106 16
3	100 64	13	103 23	23	106 52
4	100 87	14	103 53	24	106 89
5	101 10	15	103 83	25	107 27
6	101 34	16	104 14	26	107 65
7	101 59	17	104 46	27	108 04
8	101 85	18	104 70	28	108 43
9	102 11	19	105 12	29	108 83
10	102 38	20	105 46	29 4	108 99

SALT

Table IX

SOLUBILITY OF CALCIUM CARBONATE IN WATER AT DIFFERENT TEMPERATURES

Grms CaCO_3 per litre

C	0 081
0	0 070
10	0 065
20	0 056
25	0 052
30	0 044
40	0 038
50	

Table X

SOLUBILITY OF CALCIUM SULPHATE IN WATER

Grms CaSO_4 per 100 grms

%	Solution	Water
0	0 1759	0 1762
10	0 1928	0 1932
18	0 2016	0 2020
25	0 2080	0 2084
30	0 2090	0 2094
35	0 2096	0 2100
40	0 2097	0 2101
55	0 2009	0 2013
65 3	0 1932	0 1936
75	0 1847	0 1850
100	0 1619	0 1622

SALT

Table XII

SOLUBILITY OF POTASSIUM CHLORIDE AT VARIOUS TEMPERATURES

°C.	Potassium Chloride KCl	
	Weight in 100 parts of water	Weight of water to dissolve 1 part of salt
0	28 5	3 51
5	30 3	3 30
10	32 0	3 13
15	33 4	2 99
20	34 7	2 88
25	36 1	2 77
30	37 4	2 67
35	38 8	2 58
40	40 1	2 49
45	41 5	2 41
50	42 8	2 33
55	44 2	2 26
60	45 5	2 20
65	46 9	2 13
70	48 3	2 07
75	49 7	2 01
80	51 0	1 96
85	52 4	1 91
90	53 8	1 86
95	55 2	1 81
100	56 6	1 77

Table XIV

SOLUBILITY OF SODIUM SULPHATE IN WATER
AT DIFFERENT TEMPERATURES

°C	Grms Na ₂ SO ₄ per 100 Grms	
	Solution	Water
0	4 76	5 0
5	6 0	6 4
10	8 3	9 0
20	16 3	19 4
25	21 9	28 0
30	29 0	40 8
40	32 8	48 8
50	31 8	46 7
60	31 2	45 3
80	30 4	43 7
100	29 8	42 5
120	29 5	41 95
140	29 6	42 0

SOLUBILITY OF SODIUM SULPHATE AT VARIOUS TEMPERATURES

°C	Sodium Sulphate Na ₂ SO ₄ , 10 H ₂ O	
	Weight in 100 parts of water	Weight of water to dissolve 1 part salt
0	12 16	8 224
10	23 04	4 340
15	(18°)	
20	48 41	2 065
25	98 48	1 015
30	184 1	0 543

SALT

Table XVI

SOLUBILITY OF MAGNESIUM CHLORIDE IN WATER AT DIFFERENT TEMPERATURES

°C	Grms MgCl ₂ in 100 Grms	
	Solution	Water
0	34 5	52 8
10	34 9	53 5
25	36 2	56 7
40	36 5	57 5
60	37 9	61 0
80	39 8	66 0
100	42 2	73 0
116 7	46 2	85 5
152 6	49 1	96 4
186	56 1	128 0

SOLUBILITY OF MAGNESIUM CHLORIDE AT VARIOUS TEMPERATURES

°C	Magnesium Chloride MgCl ₂ × 6H ₂ O	
	Weight in 100 parts of water	Weight of water to dissolve 1 part of salt
25	364 7	0 27
40	416 5	0 24
60	485 6	0 20
80	558 6	0 17-

SALT

Table XVIII

SOLUBILITY OF MAGNESIUM BROMIDE IN WATER

°C	Grms MgBr ₂ per 100 Grms	
	Solution	Water
-10	47 2	90 5
0	47 9	91 9
10	48 6	94 5
18	49 0	96 1
20	49 1	96 5
25	49 4	97 6
30	49 8	99 2
40	50 4	101 6
50	51 0	104 1
60	51 8	107 5
80	53 2	113 7
100	54 6	120 2
120	56 0	127 5
140	58 0	138 1
160	62 0	163 1

Table XX
VAPOUR PRESSURE OF SATURATED SALT SOLUTIONS.

°C	mm
10	7 34
11	7 93
12	8 38
13	8 95
14	9 55
15	10 18
16	10 86
17	11 52
18	12 30
19	13 10
20	13 93
21	14 80
22	15 73
23	16 70
24	17 74
25	18 84
26	19 99
27	21 21
28	22 48
29	23 83
30	25 25

Imports of Chemicals into India
BLEACHING MATERIALS

	Quantity	Value	Rate per cwt.
1919-20	Cwts	Rs	Rs
	97,339	19,88,355	20
1920-21	163,825	36,64,964	22
1921-22	84,256	15,76,308	19
1922-23	52,073	6,80,328	13

BICARBONATE OF SODA

	Quantity	Value	Rate per cwt.
	Cwts	Rs	Rs
1915-16	120,253	6,38,775	5
1916-17	109,433	6,98,850	6
1917-18	90,749	7,22,325	8
1918-19	166,549	17,65,950	11
1919-20	85,617	10,33,065	12
1920-21	86,196	7,50,018	9
1921-22	108,345	11,10,909	10
1922-23	93,651	9,46,982	10

CAUSTIC SODA

	Quantity	Value	Rate per cwt.
	Cwts	Rs	Rs
1915-16	87,901	9,72,675	12
1916-17	57,091	11,86,920	21
1917-18	117,105	33,42,915	29
1918-19	71,147	21,99,495	31
1919-20	101,989	24,32,835	24
1920-21	83,951	16,54,778	20
1921-22	67,136	13,36,263	20
1922-23	111,947	20,85,284	19

DISTANCES OF PRINCIPAL PLACES BY RAIL FROM NIMAKNAGAR

	Miles
Dhrangadhra	11
Wadhwan	32
Bhavnagar	136
Wankaner	80
Rajkot	106
Veraval	220
Porbunder	250
Jamnagar	157
Viramgam	72
Ahmedabad	112
Baroda	174
Broach	218
Surat	255
Bombay	422
Mehsana	113
Abu Road	186
Ajmer	375
Sambhar Lake	421
Delhi	610

SALT

224

PRODUCTION OF SEA SALT IN BOMBAY PRESIDENCY

	1919 20 Mds	1920 21 Mds	1921-22 Mds	1922 23 Mds
Dharasna	300,352	440,492	517,224	472,039
Bhandup	151,246	235,044	255,283	302,761
Naroli	20,268	22,475	18,012	15,443
Bassein	1,515,822	1,402,472	1,407,718	1,790,848
Rai	1,216,840	1,132,460	1,135,707	1,470,725
Trombay	949,430	887,025	814,409	1,031,508
Dadar	910,854	778,821	687,649	823,300
Belapur	730,034	809,383	726,525	806,771
Shewa	15,43,532	1,552,209	1,175,890	1,871,305
Uran	770,042	1,057,013	565,828	1,043,297
Karanja	409,882	339,216	272,345	533,788
Pen	225,050	103,135	167,270	407,816
Shiroda	73,337	72,025	58,196	96,123
Sanikatta	193,415	230,511	57,925	244,797
Total Sea Salt	9,109,120	9,072,487	7,919,990	11,006,631
Kharaghoda Brine Salt	3,305,925	4,044,762	4,125,756	4,527,110
GRAND TOTAL	12,505,054	14,017,243	12,045,746	15,533,741

WORLD'S PRODUCTION OF SALT (Million Tons)

	1913	Per cent	1920	Per cent
U. S. A.	4 300	25 0	6 107	32 7
U. K.	2 248	13 1	2 158	11 5
Germany	1 888	10 0	2 887	15 4
India	1 299	7 6	1 764	9 4
France	1 262	7 3	1 230	6 6
Russia	1 910	11 2	0 539	2 9
Spain	0 590	3 4	0 974	5 2
Japan	0 610	3 5	0 580	3 1
Other Countries	3 093	18 0	2 461	13 2
Total	17 200	100 0	18 700	100 0

- Bittern—volume of 29 5°Bo, 46
 - recovery of constituents, 173
- Bleaching materials—imports of, 218
- Boiling point of bittern of 1 35 density, 103
- Bombay salt manufacture, 198
 - construction of salterns, 138
 - cost of production, 139
 - labour, 139
 - price, 139, 140
 - yield per pan, 138
- Brine, cost of—at Kharaghoda, 68
 - Sambhar Lake, 126
- Bromine, recovery of—from bittern, 62, 102, 170, 194
- Buckley 24
- By Products from Salt industry, 54 105, 150 154 171

- Calcium Carbonate, solubility of, 208
- Chloride, 61
 - solubility of, 213
- Sulphate, 55
 - solubility of, 208
- Carnallite, 69, 101, 154, 177, 178, 183, 185, 187, 191, 194, 197
- Causes influencing rapidity of evaporation, 19
- Caustic soda—imports of, 220
- Cerebro salt, 32
- Cheshire Salt Works, 158,
 - cost of production, 158
 - fuel for evaporation, 158
 - grades of salt, 159
 - pana, 157
 - prices of salt, 158, 159
 - purification cost of brine, 158
 - shipment to India, 160
 - Vacuum evaporators, 158
- Compagnie du Midi, 145
 - de Produits Chimique 148
- Composition of bittern, 42
 - salts in crops, 191
- Concentration of sea water and brines, 36
- Condensers at Karaghoda, 67
- Contraction in volume of brine of different densities, 34
- Conversion of maunds into tons, 205
 - thermometric readings, 201
 - weights and measures, 200

Hildebrand—J. H., 46, 171
 Hygrometer, 21
 Hydrometer, Beaume, 35
 table, 203
 salimeter, 35
 twaddle, 35

Imports of chemicals into India, 218
 salt in Bengal, 134
 India as a salt producing country, 1

Karnite, 183, 186
 Kalabagh, 129
 Karkatch salt, 133
 Kharaghoda, 63
 salt works, 63
 administration charges, 82
 agaras, 64
 advances by Government, 78
 agaras earnings of, 77
 grants to, 78
 loans to, 64
 Baragara salt, 63, 80, 82, 84, 85
 commencement of work, 64
 condensers, 67
 cost of constructing, 67
 cost of administration per maund, 67
 brine, 68
 layout, 70
 price of salt, 84
 cost of production, 76
 salt to Government, 77
 storage, 79
 harvesting of salt, 74
 labour, 65
 loading of salt, 75
 loss and wastage, 79
 manufacture of magnesium chloride, 85
 packing and forwarding salt, 80
 pans, 68
 construction, 68
 cost of, 70

SALT

230

Hildebrand—J. H., 40, 171
Hygrometer, 21
Hydrometer, Beaume, 35
table, 203
salometer, 35
twaddle, 35

Imports of chemicals into India, 218
salt in Bengal, 134
India as a salt producing country, 1

Kainite, 183, 186
Kalabagh, 129
Karkatch salt, 133
Kharaghoda, 63
salt works, 63
administration charges, 82
agarias, 64
advances by Government, 78
agarias earnings of, 77
grants to, 78
loans to, 64
Baragara salt, 63, 80, 82, 84, 85
commencement of work, 64
condensers, 67
cost of constructing, 67
cost of administration per maund, 70
brine, 68
layout, 70
price of salt, 84
cost of production, 76
salt to Government, 77
storage, 79
harvesting of salt, 74
labour, 65
loading of salt, 75
loss and wastage, 79
manufacture of magnesium chloride, 85
packing and forwarding salt, 80
pans, 68
construction, 68
cost of, 70

Hildebrand—J. H., 46, 171
 Hygrometer, 21
 Hydrometer, Beaume, 35
 table, 203
 salimeter, 35
 twaddle, 35

Imports of chemicals into India, 218
 salt in Bengal, 134
 India as a salt producing country, 1

Kainite, 183, 186
 Kalabagh, 129
 Karkatch salt, 133
 Kharaghoda, 63
 salt works, 63
 administration charges, 82
 agaras, 64
 advances by Government, 78
 agaras earnings of, 77
 grants to, 78
 loans to, 64
 Baragara salt, 63, 80, 82, 84, 85
 commencement of work, 64
 condensers, 67
 cost of constructing,
 cost of administration per maund,
 brine, 68
 layout, 70
 price of salt, 84
 cost of production, 76
 salt to Government, 77
 storage, 79
 harvesting of salt, 74
 labour, 65
 loading of salt, 75
 loss and wastage, 79
 manufacture of magnesium chloride, 85
 packing and forwarding salt, 80
 pans, 68
 construction, 68
 cost of, 70

Magnesium chloride cost of production at Stassfurt, 60, 153, 156, 194
competition with foreign chloride, 88
imports into India, 87, 219
manufacture at Kharaghoda, 85
Kuda, 110
production in India, 87
solubility, 214
uses, 61, 194
sulphate, 41, 58, 150, 152, 156
imports, 219
properties, 58
solubility, 209
uses, 58

Mandi State, 129

Manufacture of salt by steam evaporation, 106

Manzella, 38, 41, 47, 151

Mayo salt mines, 120

Michigan salt works, 161

Moisture in air, 20

Montpelier salt works, 145

New York State Salt Manufacture in, 102

Nimaknagar salt works, 113
average rainfall, 123
advantages of improved layout, 115
clouded sky, 122
humidity, 124
layout, 114
maximum temperature, 117
mean temperature of air, 119
minimum temperature, 118
rainy days, 121
site, 113
weather conditions, 115

Ohio, 162

Pachbadra and Didwana salt works, 128

Pennsylvania salt works, 162

Phalen, 44, 161, 167

Plaster of Paris, 55

- Salt production in Sind, 140
 - the United States, 160
 - world, 224
- separating and remaining in solution, 39, 40, 41
- solution—volumes of, 207
- sources of, in India, 1
- Union, 157, 159
- weight of one cubic foot, 57, 79
- Works, Aden, 141
 - American, 161
 - Bombay, 138
 - Compagnie du Midi, 145
 - French, 144
 - English, 156
 - Great Salt Lake, 163
 - Kharaghoda, 63
 - Kuda, 109
 - Madras, 134
 - Mayo Mines, 129
 - Nimaknagar, 113
 - Pachbadra and Didwana, 128
 - Salin de Giraud, 148
 - Salin du Nuno and de Huyeres, 147
 - Sambhar Lake, 125
 - San Francisco Bay, 171
 - Sindh, 139
 - Warcha, 128
- Schonite, 183
- Sea water, 14, 10, 11, 12, 36, 144
- Separation of potassium from magnesium salts, 187
 - sodium chloride from magnesium sulphate, 46, 195
- Shipment charges to India, 160
- Sindh salt manufacture, 139
- Sodium carbonate, 125
 - imports of, 221
- chloride, 57
 - boiling point of solutions, 206
 - properties, 57
 - separation of, 41
 - specific gravity of solutions, 206
- sulphate, 59, 176
 - properties, 59
 - solubility, 212
 - uses, 59
- silicate, imports of, 221
- Solar evaporation, 19

